首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Five species of Leucocytozoon were recovered from 35/828 birds of 95 species examined from 6 sites in West Africa between May 1995 and June 2001. Leucocytozoon pogoniuli n. sp. is described from the tinker barbets Pogoniulus subsulphureus and Pogoniulus atroflavus. Leucocytozoon trachyphoni n. sp. is described from the barbet Trachyphonus purpureus. No leucocytozoids have been reported previously in species of Pogoniulus. Leucocytozoon nectariniae was identified from the sunbird Nectarinia olivacea, and Leucocytozoon brimonti was recovered from 4 species of Pycnonotidae (bulbuls), all of which are new host records. We also report the first Leucocytozoon to be recovered from the phylogenetically isolated bird, Picathartes sp. (Picathartidae). This parasite is similar in appearance to Leucocytozoon sakharoffi, and probably represents a previously undescribed species. In view of the intraspecific variability and, frequently, relatively minor interspecific differences within Leucocytozoidae, we suggest that the development and application of molecular techniques would greatly advance understanding of speciation and relationships within this family.  相似文献   

2.
Species of Leucocytozoon (Haemosporida, Leucocytozoidae) traditionally have been described based on morphological characters of their blood stages and host cells, with limited information on their avian host specificity. Based on the current taxonomy, Leucocytozoon toddi is the sole valid species of leucocytozoids parasitizing falconiform birds. Using a nested polymerase chain reaction protocol, we determined the prevalence of Leucocytozoon infection in 5 species of diurnal raptors from California. Of 591 birds tested, 177 (29.9%) were infected with Leucocytozoon toddi. Subsequent phylogenetic analysis of the cytochrome b gene revealed that distinct haplotypes are present in hawks of these genera. Haplotypes present in Buteo spp. are not found in Accipiter spp., and there is a 10.9% sequence divergence between the 2 lineage clades. In addition, Leucocytozoon sp. from Accipiter spp. from Europe group more closely with parasites found in Accipiter spp. from California than the same California Accipiter species do with their sympatric Buteo spp. Similarly, a Leucocytozoon haplotype from a Common Buzzard (Buteo buteo) from Kazakhstan forms a monophyletic lineage with a parasite from B. jamaicensis from California. These results suggest that Leucocytozoon toddi is most likely a group of cryptic species, with 1 species infecting Buteo spp. and 1 or more species, or subspecies, infecting Accipiter spp.  相似文献   

3.
Population dynamics of round and elongate gametocytes of Leucocytozoon in wild and captive blue grouse (Dendragapus obscurus (Say)) from Hardwicke Island, British Columbia, were studied from 1980 to 1982. Blue grouse chicks were sampled weekly throughout each transmission season. Three patterns in the type of gametocyte produced during primary infection were observed in naturally infected captive and wild blue grouse chicks. Such variation in the expression of the gametocyte stage within a single host population suggests a different interpretation than has been previously reported for species of Leucocytozoon. The data from the primary patterns and profiles coupled with reexposure data and the asynchronous appearance of round and elongate gametocytes can be best interpreted as infection with two concurrent species of Leucocytozoon in blue grouse. More detailed research on the life cycle is necessary to confirm if two species of Leucocytozoon exist in blue grouse.  相似文献   

4.
Avian blood parasites have been intensively studied using morphological methods with limited information on their host specificity and species taxonomic status. Now the analysis of gene sequences, especially the mitochondrial cytochrome b gene of the avian haemosporidian species of Haemoproteus, Plasmodium, and Leucocytozoon, offers a new tool to review the parasite specificity and status. By comparing morphological and genetic techniques, we observed nearly the same overall prevalence of haemosporidian parasites by microscopy (19.8%) and polymerase chain reaction (PCR) (21.8%) analyses. However, in contrast to the single valid Leucocytozoon species (L. toddi) in the Falconiformes we detected 4 clearly distinctive strains by PCR screening. In the Strigiformes, where the only valid Leucocytozoon species is L. danilewskyi, we detected 3 genetically different strains of Leucocytozoon spp. Two strains of Haemoproteus spp. were detected in the birds of prey and owls examined, whereas the strain found in the tawny owl belonged to the morphospecies Haemoproteus noctuae. Three Plasmodium spp. strains that had already been found in Passeriformes were also detected in the birds of prey and owls examined here, supporting previous findings indicating a broad and nonspecific host spectrum bridging different bird orders.  相似文献   

5.
The use of new powerful nested polymerase chain reaction (PCR) techniques to identify and screen for prevalence of parasites has a huge potential. It allows for the detection and identification of low-intensity infections, but its high sensitivity and technical setup may also induce problems. Here, we report a cautionary note regarding misleading amplification of avian malaria species (Haemoproteus and Plasmodium) during Leucocytozoon spp. detection. We used a previously described nested PCR method for the molecular detection of avian malaria and Leucocytozoon spp. In the first step of the PCR protocol, these parasites are detected simultaneously; in the second PCR, Haemoproteus and Plasmodium spp. are separated from Leucocytozoon spp. However, in certain cases when a bird was infected with avian malaria, we obtained a slightly longer PCR product during the detection of Leucocytozoon spp. Our data imply that these "false" Leucocytozoon fragments are the consequences of strong amplification of certain malaria lineages in the first PCR, which can also be detected after the second PCR amplification that is specific to Leucocytozoon spp. parasites. Because these "false" Leucocytozoon fragments are slightly longer than the normal Leucocytozoon fragments, we suggest the use of well-separating agarose gels, several positive controls, and molecular standards to facilitate their separation. If one obtains a fragment that differs in length from the one expected for Leucocytozoon spp., sequencing is essential. More generally, in order to limit this type of problem with nested PCR protocols, we suggest that the first and the second primer pair be chosen so that they have different annealing temperatures.  相似文献   

6.
We examined the prevalence and host fidelity of avian haemosporidian parasites belonging to the genera Haemoproteus, Leucocytozoon and Plasmodium in the central Philippine islands by sampling 23 bird families (42 species). Using species-specific PCR assays of the mitochondrial cytochrome b gene (471base pairs, bp), we detected infections in 91 of the 215 screened individuals (42%). We also discriminated between single and multiple infections. Thirty-one infected individuals harbored a single Haemoproteus lineage (14%), 18 a single Leucocytozoon lineage (8%) and 12 a single Plasmodium lineage (6%). Of the 215 screened birds, 30 (14%) presented different types of multiple infections. Intrageneric mixed infections were generally more common (18 Haemoproteus/Haemoproteus, 3 Leucocytozoon/Leucocytozoon, and 1 Plasmodium/Plasmodium) than intergeneric mixed infections (7 Haemoproteus/Leucocytozoon and 1 Haemoproteus/Leucocytozoon/Plasmodium). We recovered 81 unique haemosporidian mitochondrial haplotypes. These clustered in three strongly supported monophyletic clades that correspond to the three haemosporidian genera. Related lineages of Haemoproteus and Leucocytozoon were more likely to derive from the same host family than predicted by chance; however, this was not the case for Plasmodium. These results indicate that switches between host families are more likely to occur in Plasmodium. We conclude that Haemoproteus has undergone a recent diversification across well-supported host-family specific clades, while Leucocytozoon shows a longer association with its host(s). This study supports previous evidence of a higher prevalence and stronger host-family specificity of Haemoproteus and Leucocytozoon compared to Plasmodium.  相似文献   

7.
Population dynamics of round and elongate gametocytes of Leucocytozoon in wild and captive blue grouse (Dendragapus obscurus (Say)) from Hardwicke Island, British Columbia, were studied from 1980 to 1982. Blue grouse chicks were sampled weekly throughout each transmission season. Three patterns in the type of gametocyte produced during primary infection were observed in naturally-infected captive and wild blue grouse chicks. Such variation in the expression of the gametocyte stage within a single host population suggests a different interpretation than has been previously reported for species of Leucocytozoon. The data from the primary patterns and profiles coupled with reexposure data and the asynchronous appearance of round and elongate gametocytes can be best interpreted as infection with two concurrent species of Leucocytozoon in blue grouse. More detailed research on the life cycle is necessary to confirm if two species of Leucocytozoon exist in blue grouse.  相似文献   

8.
A number of PCR assays have now been described for detecting species of the avian malaria parasites Plasmodium and Haemoproteus from blood samples. The published protocols amplify both genera simultaneously, owing to the high degree of sequence similarity between them in target genes. However, the potential for coamplification in these assays of a third, closely related hematozoan parasite, Leucocytozoon spp. has been largely overlooked. In this paper, we highlight the importance of this issue, showing that coamplification of Leucocytozoon spp. occurs in several of the protocols designed to amplify avian malaria parasites. This leads not only to scoring of false positives but, in cases of mixed Leucocytozoon/malaria infections, may also lead to scoring of false negatives. We, therefore, advocate the use of a post-PCR diagnostic step, such as RFLP analysis or sequencing, to assess the contribution of Leucocytozoon spp. to overall prevalence.  相似文献   

9.
Many bird species host several lineages of apicomplexan blood parasites (Protista spp., Haemosporida spp.), some of which are shared across different host species. To understand such complex systems, it is essential to consider the fact that different lineages, species, and families of parasites can occur in the same population, as well as in the same individual bird, and that these parasites may compete or interact with each other. In this study, we present a new polymerase chain reaction (PCR) protocol that, for the first time, enables simultaneous typing of species from the 3 most common avian blood parasite genera (Haemoproteus, Plasmodium, and Leucocytozoon). By combining the high detection rate of a nested PCR with another PCR step to separate species of Plasmodium and Haemoproteus from Leucocytozoon, this procedure provides an easy, rapid, and accurate method to separate and investigate these parasites within a blood sample. We have applied this method to bird species with known infections of Leucocytozoon spp., Plasmodium spp., and Haemoproteus spp. To obtain a higher number of parasite lineages and to test the repeatability of the method, we also applied it to blood samples from bluethroats (Luscinia svecica), for which we had no prior knowledge regarding the blood parasite infections. Although only a small number of different bird species were investigated (6 passerine species), we found 22 different parasite species lineages (4 Haemoproteus, 8 Plasmodium, and 10 Leucocytozoon).  相似文献   

10.
11.
Ninety-one birds of 23 species from Chile were examined for haematozoa; 13 birds of seven species harbored species of Haemoproteus, Leucocytozoon, Plasmodium, Trypanosoma and microfilariae. Haemoproteids (representing four species) were the most common parasites and occurred in 10 of the 13 infected birds.  相似文献   

12.
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls.  相似文献   

13.
The level of host specificity of blood-sucking invertebrates may have both ecological and evolutionary implications for the parasites they are transmitting. We used blood meals from wild-caught blackflies for molecular identification of parasites and hosts to examine patterns of host specificity and how these may affect the transmission of avian blood parasites of the genus Leucocytozoon . We found that five different species of ornithophilic blackflies preferred different species of birds when taking their blood meals. Of the blackflies that contained avian blood meals, 62% were infected with Leucocytozoon parasites, consisting of 15 different parasite lineages. For the blackfly species, there was a significant association between the host width (measured as the genetic differentiation between the used hosts) and the genetic similarity of the parasites in their blood meals. The absence of similar parasite in blood meals from blackflies with different host preferences is interpreted as a result of the vector–host associations. The observed associations between blackfly species and host species are therefore likely to hinder parasites to be transmitted between different host-groups, resulting in ecologically driven associations between certain parasite lineages and hosts species.  相似文献   

14.
SYNOPSIS. It is evident from a survey of the Russian literature that many species of avian haematozoa recorded do not meet the basic criteria required by the International Code of Zoological Nomenclature. Thus 28 species of Haemoproteus and 4 species of Leucocytozoon are considered to be nomina nuda, while 1 species, Leucocytozoon turtur orientalis is a synonym of L. marchouxi.  相似文献   

15.
A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mitochondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocytozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relationships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi, is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis. Explicit hypothesis testing supported these conclusions.  相似文献   

16.
A new species of Leucocytozoon with gametocytes in fusiform host cells is described from the Bukharan great tit Parus bokharensis. It represents the first leucocytozoid in which the host cell nucleus is split into 2 more or less symmetrical portions, each located at an end of the host cell within its elongated fusiform processes. This species appears to be restricted with respect to geography and host.  相似文献   

17.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   

18.
A total of 135 birds of 26 species in 13 families was examined for blood parasites; 43 birds (31.9%) of 13 species were infected; species of the Ploceidae were the most heavily infected. Species of Haemoproteus occurred most commonly 29 birds) while Leucocytozoon and Plasmodium species were virtually absent. There was no significant difference in the prevalence of hematozoa in birds from the mature rainforest and those in a savannah-urban setting.  相似文献   

19.
When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of S?o Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations.  相似文献   

20.
Bennett, G. F., Earlé, R. A. &; Peirce, M. A. 1993. The Leucocytozoidae of South African birds: Musophagiformes, Cuculiformes and Piciformes. Ostrich 64:73-78.

The leucocytozoids of the avian orders Musophagiformes, Cuculiformes and Piciformes are reviewed. Leucocytozoon dinizi Tendeiro, 1947 of the Musophagidae is re-described and a neohapantotype designated. Leucocytozoon centropi Fantham, 1921 is re-described and L. coccyzus Coatney &; West, 1938 is synonymized with it and a neohapantotype designated. Leucocytozoon squamatus Nandi, 1986 of the Pi-cidae is re-described and compared with Leucocytozoon capitonis n. sp. of the piciform family Capitonidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号