首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of protein kinase C (PKC) isoforms in the developing murine ventricle was studied using Western blotting, assays of PKC activity, and immunoprecipitations. The abundance of two Ca2+-dependent isoforms, PKCalpha and PKCbetaII, as well as two Ca2+-independent isoforms, PKCdelta and PKCepsilon, decreased during postnatal development to <15% of the levels detected at embryonic day 18. The analysis of the subcellular distribution of the four isoforms showed that PKCdelta and PKCepsilon were associated preferentially with the particulate fraction in fetal ventricles, indicating a high intrinsic activation state of these isoforms at this developmental time point. The expression of PKCalpha in cardiomyocytes underwent a developmental change. Although preferentially expressed in neonatal cardiomyocytes, this isoform was downregulated in adult cardiomyocytes. In fast-performance liquid chromatography-purified ventricular extracts, the majority of PKC activity was Ca2+-independent in both fetal and adult ventricles. Immunoprecipitation assays indicated that PKCdelta and PKCepsilon were responsible for the majority of the Ca2+-independent activity. These studies indicate a prominent role for Ca2+-independent PKC isoforms in the mouse heart.  相似文献   

2.
Previously, we have shown that protein kinase C (PKC) forms a direct high-affinity, isozyme-specific and membrane lipid-independent interaction with Rho GTPases [Slater, S. J., Seiz, J. L., Stagliano, B. A., and Stubbs, C. D. (2001) Biochemistry 40, 4437-4445]. Since the cellular activation of PKCalpha involves an initial translocation from cytosolic to membrane compartments, the present study investigates the interdependence between the direct protein-protein interaction of PKCalpha with the Rho GTPase, Cdc42, and the protein-lipid interactions of PKCalpha with membranes. It was hypothesized that the interaction of PKCalpha with membrane-bound Cdc42 would contribute to the overall membrane-binding affinity of the kinase by providing an additional anchor. However, it was found that the incorporation of isoprenylated Cdc42 into membranes resulted in an apparent decrease in the membrane-binding affinity of PKCalpha, whereas the association of PKCbetaI, PKCdelta, PKCepsilon, and PKCzeta was each unaffected. The presence of membrane-bound Cdc42 resulted in a rightward shift in both the PS- and Ca2+-concentration response curves for PKCalpha membrane association and for the ensuing activation, whereas the maximal levels of binding and activation attained at saturating PS and Ca2+ concentrations were in each case unaffected. Overall, these findings suggest that PKCalpha undergoes a isozyme-specific interaction with membrane-bound Cdc42 to form a PKCalpha-Cdc42 complex, which possesses a membrane-binding affinity that is reduced relative to that of the individual components due to competition between Cdc42 and PS/Ca2+ for binding to PKCalpha. Consistent with this, it was found that the interaction of PKCalpha with membrane-bound Cdc42 was accompanied by the physical dissociation of the PKCalpha-Cdc42 complex from membranes. Thus, the study provides a novel mechanism by which the membrane association and activation of PKCalpha and Cdc42 may be regulated by competing protein-protein and protein-lipid interactions.  相似文献   

3.
Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.  相似文献   

4.
The regulation of phospholipase D1 (PLD1), which has been shown to be activated by protein kinase C (PKC) alpha, was investigated in the human melanoma cell lines. In G361 cell line, which lacks PKCalpha, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced PLD activation was potentiated by introducing PKCalpha by the adenovirus vector. The kinase-negative PKCalpha elevated TPA-induced PLD activity less significantly than the wild type. A PKC specific inhibitor GF109203X lowered PLD activation in the cells expressing PKCalpha, but did not prevent PLD potentiation induced by the kinase-negative PKCalpha. Expression of PKCbetaII and the kinase-negative PKCbetaII enhanced TPA-stimulated PLD activity moderately in MeWo cell line, in which PKCbetaII is absent. Furthermore, the TPA treatment increased the association of PKCalpha, PKCbetaII, and their kinase-negative mutants with PLD1 in melanoma cells. These results indicate that PLD1 is dually regulated through phosphorylation as well as through the protein-protein interaction by PKCalpha, and probably by PKCbetaII, in vivo.  相似文献   

5.
Jolly-Tornetta C  Wolf BA 《Biochemistry》2000,39(25):7428-7435
Cleavage of amyloid precursor protein (APP) by beta-secretase generates beta-amyloid (Abeta), the major component of senile plaques in Alzheimer's disease. Cleavage of APP by alpha-secretase prevents Abeta formation, producing nonamyloidogenic APP products. Protein kinase C (PKC) has been shown to regulate APPs secretion, and PKCalpha and PKCepsilon have been implicated in APPs secretion in fibroblasts. This study examined the PKC isoform involved in regulated APPs secretion in human NT2N neurons and in CHO cells stably expressing APP(695). Inhibition of PMA-induced APPs secretion with the PKC inhibitors Calphostin C and GF109203X demonstrated that PKC is involved in PMA-regulated APPs secretion in NT2N cells. The specific PKC isoforms present in NT2N and CHO695 cells were identified, and PKCalpha and PKCepsilon were found to translocate from cytosol to membranes in NT2N and CHO695 cells. Translocation of PKC to the membrane allows for activation of the enzyme, as well as for positioning of the enzyme close to its substrate. Long-term PMA treatment led to complete downregulation of PKCalpha in NT2N cells and to downregulation of PKCalpha and PKCepsilon in CHO695 cells. PKCalpha downregulation in the NT2N cells resulted in loss of PMA-regulated APPs secretion and a substantial reduction in constitutive APPs secretion. Downregulation of PKCalpha and PKCepsilon in CHO695 cells resulted in loss of PMA-regulated APPs secretion; however, constitutive APPs secretion was unaffected. These findings suggest that PKCalpha is involved in PMA-regulated APPs secretion in NT2N cells and PKCalpha and/or PKCepsilon is involved in PMA-regulated APPs secretion in CHO695 cells.  相似文献   

6.
The IL-8 (or CXCL8) chemokine receptors, CXCR1 and CXCR2, activate protein kinase C (PKC) to mediate leukocyte functions. To investigate the roles of different PKC isoforms in CXCL8 receptor activation and regulation, human mononuclear phagocytes were treated with CXCL8 or CXCL1 (melanoma growth-stimulating activity), which is specific for CXCR2. Plasma membrane association was used as a measure of PKC activation. Both receptors induced time-dependent association of PKCalpha, -beta1, and -beta2 to the membrane, but only CXCR1 activated PKCepsilon. CXCL8 also failed to activate PKCepsilon in RBL-2H3 cells stably expressing CXCR2. DeltaCXCR2, a cytoplasmic tail deletion mutant of CXCR2 that is resistant to internalization, activated PKCepsilon as well as CXCR1. Expression of the PKCepsilon inhibitor peptide epsilonV1 in RBL-2H3 cells blocked PKCepsilon translocation and inhibited receptor-mediated exocytosis, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization. epsilonV1 also inhibited CXCR1-, CCR5-, and DeltaCXCR2-mediated cross-regulatory signals for GTPase activity, Ca(2+) mobilization, and internalization. Peritoneal macrophages from PKCepsilon-deficient mice (PKCepsilon(-/-)) also showed decreased CCR5-mediated cross-desensitization of G protein activation and Ca(2+) mobilization. Taken together, the results indicate that CXCR1 and CCR5 activate PKCepsilon to mediate cross-inhibitory signals. Inhibition or deletion of PKCepsilon decreases receptor-induced exocytosis and cross-regulatory signals, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization, suggesting that cross-regulation is a Ca(2+)-independent process. Because DeltaCXCR2, but not CXCR2, activates PKCepsilon and cross-desensitizes CCR5, the data further suggest that signal duration leading to activation of novel PKC may modulate receptor-mediated cross-inhibitory signals.  相似文献   

7.
Tao J  Wang HY  Malbon CC 《The EMBO journal》2003,22(24):6419-6429
A-kinase-anchoring protein 250 (AKAP250; gravin) acts as a scaffold that binds protein kinase A (PKA), protein kinase C and protein phosphatases, associating reversibly with the beta(2)-adrenergic receptor. The receptor-binding domain of the scaffold and the regulation of the receptor-scaffold association was revealed through mutagenesis and biochemical analyses. The AKAP domain found in other members of this superfamily is essential for the scaffold-receptor interactions. Gravin constructs lacking the AKAP domain displayed no binding to the receptor. Metabolic labeling studies in vivo demonstrate agonist-stimulated phosphorylation of gravin and enhanced gravin-receptor association. Analysis of the AKAP domain revealed two canonical PKA sites phosphorylated in response to elevated cAMP, blocked by PKA inhibitor, and essential for scaffold-receptor association and for resensitization of the receptor. The AKAP appears to provide the catalytic PKA activity responsible for phosphorylation of the scaffold in response to agonist activation of the receptor as well as for the association of the scaffold with the receptor, a step critical to receptor resensitization.  相似文献   

8.
UV-induced signal transduction may be involved in tumor promotion and induction of apoptosis. The role of protein kinase C (PKC) in UVB-induced signal transduction is not well understood. This study showed that UVB markedly induced translocation of membrane-associated PKCepsilon and PKCdelta, but not PKCalpha, from cytosol to membrane. Dominant negative mutant (DNM) PKCepsilon or PKCdelta inhibited UVB-induced translocation of PKCepsilon and PKCdelta, respectively. UVB-induced activation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH2-terminal kinases (JNKs) was strongly inhibited by DNM PKCepsilon and PKCdelta, whereas the DNM of PKCalpha was less effective on the UVB-induced phosphorylation of Erks and JNKs. Among the PKC inhibitors used only rottlerin, a selective inhibitor of PKCdelta, markedly inhibited the UVB-induced activation of Erks and JNKs, but not p38 kinases. Safingol, a selective inhibitor for PKCalpha, did not show any inhibitory effect on UVB-induced mitogen-activated protein kinase activation. GF109203X is a stronger inhibitor of classical PKC than novel PKC. Lower concentrations of GF109203X (<10 microM) had no effect on UVB-induced activation of Erks or JNKs. However, at higher concentrations (over 20 microM), GF109203X inhibited UVB-induced activation of JNKs, Erks, and even p38 kinases. Meanwhile, rottlerin and GF109203X markedly inhibited UVB-induced apoptosis of JB6 cells, whereas safingol had little inhibitory effect. DNM-Erk2 cells and PD98059, a selective inhibitor for mitogen-activated protein kinase/extracellular signal-regulated kinase 1 that directly activates Erks, inhibited UVB-induced apoptosis. DNM-JNK1 cells also blocked UVB-induced apoptosis, whereas SB202190, a specific inhibitor for p38 kinases, did not produce the inhibitory effect. These data demonstrate that PKCdelta and PKCepsilon, but not PKCalpha, mediate UVB-induced signal transduction and apoptosis in JB6 cells through activation of Erks and JNKs.  相似文献   

9.
We investigated the differential role of protein kinase C (PKC) isoforms in the regulated proteolytic release of soluble amyloid precursor protein (sAPPalpha) in SH-SY5Y neuroblastoma cells. We used cells stably transfected with cDNAs encoding either PKCalpha or PKCepsilon in the antisense orientation, producing a reduction of the expression of PKCalpha and PKCepsilon, respectively. Reduced expression of PKCalpha and/or PKCepsilon did not modify the response of the kinase to phorbol ester stimulation, demonstrating translocation of the respective isoforms from the cytosolic fraction to specific intracellular compartments with an interesting differential localization of PKCalpha to the plasma membrane and PKCepsilon to Golgi-like structures. Reduced expression of PKCalpha significantly impaired the secretion of sAPPalpha induced by treatment with phorbol esters. Treatment of PKCalpha-deficient cells with carbachol induced a significant release of sAPPalpha. These results suggest that the involvement of PKCalpha in carbachol-induced sAPPalpha release is negligible. The response to carbachol is instead completely blocked in PKCepsilon-deficient cells suggesting the importance of PKCepsilon in coupling cholinergic receptors with APP metabolism.  相似文献   

10.
ATP-competitive inhibitors of PKC (protein kinase C) such as the bisindolylmaleimide GF 109203X, which interact with the ATP-binding site in the PKC molecule, have also been shown to affect several redistribution events of PKC. However, the reason why these inhibitors affect the redistribution is still controversial. In the present study, using immunoblot analysis and GFP (green fluorescent protein)-tagged PKC, we showed that, at commonly used concentrations, these ATP-competitive inhibitors alone induced redistribution of DAG (diacylglycerol)-sensitive PKCalpha, PKCbetaII, PKCdelta and PKCepsilon, but not atypical PKCzeta, to the endomembrane or the plasma membrane. Studies with deletion and point mutants showed that the DAG-sensitive C1 domain of PKC was required for membrane redistribution by these inhibitors. Furthermore, membrane redistribution was prevented by the aminosteroid PLC (phospholipase C) inhibitor U-73122, although an ATP-competitive inhibitor had no significant effect on acute DAG generation. Immunoblot analysis showed that an ATP-competitive inhibitor enhanced cell-permeable DAG analogue- or phorbol-ester-induced translocation of endogenous PKC. Furthermore, these inhibitors also enhanced [3H]phorbol 12,13-dibutyrate binding to the cytosolic fractions from PKCalpha-GFP-overexpressing cells. These results clearly demonstrate that ATP-competitive inhibitors cause redistribution of DAG-sensitive PKCs to membranes containing endogenous DAG by altering the DAG sensitivity of PKC and support the idea that the inhibitors destabilize the closed conformation of PKC and make the C1 domain accessible to DAG. Most importantly, our findings provide novel insights for the interpretation of studies using ATP-competitive inhibitors, and, especially, suggest caution about the interpretation of the relationship between the redistribution and kinase activity of PKC.  相似文献   

11.
12.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

13.
In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCbeta1, PKCalpha, PKCepsilon, and PKCdelta, resulting in their accumulation at the entire plasma membrane (PKCbeta and -delta) or selectively at the cell-cell contacts (PKCalpha and -epsilon). The duration of activation ranged from 20 s for PKCalpha to 20 min for PKCepsilon. PKCalpha and -epsilon selective localization was lost in the presence of G?6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCalpha localization is controlled by PKCbeta1 activity and is calcium independent, while PKCepsilon localization is dependent on PKCalpha activity. PKCdelta was independent of the cascade linking PKCbeta1, -alpha, and -epsilon. Furthermore, PKCalpha, but not PKCepsilon, is involved in the TRH-induced beta-catenin relocation at cell-cell contacts, suggesting that PKCepsilon is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCbeta1 activation, which in turn initiates a calcium-independent but PKCbeta1 activity-dependent sequential translocation of PKCalpha and -epsilon. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.  相似文献   

14.
We have seen that protein kinase Calpha (PKCalpha) is transiently translocated to the plasma membrane by carbachol stimulation of neuroblastoma cells. This is induced by the Ca2+ increase, and PKCalpha does not respond to diacylglycerol (DAG). The unresponsiveness is dependent on structures in the catalytic domain of PKCalpha. This study was designed to investigate if and how the kinase activity and autophosphorylation are involved in regulating the translocation. PKCalpha enhanced green fluorescent protein translocation was studied in living neuroblastoma cells by confocal microscopy. Carbachol stimulation induced a transient translocation of PKCalpha to the plasma membrane and a sustained translocation of kinase-dead PKCalpha. In cells treated with the PKC inhibitor GF109203X, wild-type PKCalpha also showed a sustained translocation. The same effects were seen with PKCbetaI, PKCbetaII, and PKCdelta. Only kinase-dead and not wild-type PKCalpha translocated in response to 1,2-dioctanoylglycerol. To examine whether autophosphorylation regulates relocation to the cytosol, the autophosphorylation sites in PKCalpha were mutated to glutamate, to mimic phosphorylation, or alanine, to mimic the non-phosphorylated protein. After stimulation with carbachol, glutamate mutants behaved like wild-type PKCalpha, whereas alanine mutants behaved like kinase-dead PKCalpha. When the alanine mutants were treated with 1,2-dioctanoylglycerol, all cells showed a sustained translocation of the protein. However, neither carbachol nor GF109203X had any major effects on the level of autophosphorylation, and GF109203X potentiated the translocation of the glutamate mutants. We, therefore, hypothesize that 1) autophosphorylation of PKCalpha limits its sensitivity to DAG and 2) that kinase inhibitors augment the DAG sensitivity of PKCalpha, perhaps by destabilizing the closed conformation.  相似文献   

15.
Vasodilator-stimulated phosphoprotein is a substrate for protein kinase C   总被引:1,自引:0,他引:1  
Chitaley K  Chen L  Galler A  Walter U  Daum G  Clowes AW 《FEBS letters》2004,556(1-3):211-215
Vasodilator-stimulated phosphoprotein (VASP), an actin binding protein localized to areas of focal contacts, is a substrate for the cyclic adenosine monophosphate/cyclic guanosine monophosphate (cAMP/cGMP)-dependent protein kinases (PKA, PKG). In this study, we show that serum stimulation of vascular smooth muscle cells (SMCs) induces VASP phosphorylation on Ser157, in a mechanism not dependent on PKA or PKG. We tested the possibility that protein kinase C (PKC), a regulator of cytoskeletal function, is involved. PKC inhibition or down-regulation prevented serum-induced phosphorylation of VASP at Ser157 in rat vascular SMCs. Additionally, recombinant PKCalpha directly phosphorylated Ser157 on VASP. In summary, our data support the hypothesis that PKC phosphorylates VASP and mediates serum-induced VASP regulation.  相似文献   

16.
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiomyocytes. Both necessary and sufficient roles have been described for the mitogen activated protein kinase(1) (MAPK) signaling pathway, specific protein kinase C (PKC) isoforms, and calcineurin. Here we investigate the interdependence between calcineurin, MAPK, and PKC isoforms in regulating cardiomyocyte hypertrophy using three separate approaches. Hearts from hypertrophic calcineurin transgenic mice were characterized for PKC and MAPK activation. Transgenic hearts demonstrated activation of c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2), but not p38 MAPK factors. Calcineurin transgenic hearts demonstrated increased activation of PKCalpha, beta(1), and theta, but not of epsilon, beta(2), or lambda. In a second approach, cultured cardiomyocytes were infected with a calcineurin adenovirus to induce hypertrophy and the effects of pharmacologic inhibitors or co-infection with a dominant negative adenovirus were examined. Calcineurin-mediated hypertrophy was prevented with PKC inhibitors, Ca(2+) chelation, and attenuated with a dominant negative SEK-1 (MKK4) adenovirus, but inhibitors of ERK or p38 activation had no effect. In a third approach, we examined the activation of MAPK factors and PKC isoforms during the progression of load-induced hypertrophy in aortic banded rats with or without cyclosporine. We determined that inhibition of calcineurin activity with cyclosporine prevented PKCalpha, theta, and JNK activation, but did not affect PKCepsilon, beta, lambda, ERK1/2, or p38 activation. Collectively, these data indicate that calcineurin hypertrophic signaling is interconnected with PKCalpha, theta, and JNK in the heart, while PKCepsilon, beta, lambda, p38, and ERK1/2 are not involved in calcineurin-mediated hypertrophy.  相似文献   

17.
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.  相似文献   

18.
Sustained activation of protein kinase C (PKC) isoenzymes alpha and betaII leads to their translocation to a perinuclear region and to the formation of the pericentrion, a PKC-dependent subset of recycling endosomes. In MCF-7 human breast cancer cells, the action of the PKC activator 4beta-phorbol-12-myristate-13-acetate (PMA) evokes ceramide formation, which in turn prevents PKCalpha/betaII translocation to the pericentrion. In this study we investigated the mechanisms by which ceramide negatively regulates this translocation of PKCalpha/betaII. Upon PMA treatment, HEK-293 cells displayed dual phosphorylation of PKCalpha/betaII at carboxyl-terminal sites (Thr-638/641 and Ser-657/660), whereas in MCF-7 cells PKCalpha/betaII were phosphorylated at Ser-657/660 but not Thr-638/641. Inhibition of ceramide synthesis by fumonisin B1 overcame the defect in PKC phosphorylation and restored translocation of PKCalpha/betaII to the pericentrion. To determine the involvement of ceramide-activated protein phosphatases in PKC regulation, we employed small interference RNA to silence individual Ser/Thr protein phosphatases. Knockdown of isoforms alpha or beta of the catalytic subunits of protein phosphatase 1 not only increased phosphorylation of PKCalpha/betaII at Thr-638/641 but also restored PKCbetaII translocation to the pericentrion. Mutagenesis approaches in HEK-293 cells revealed that mutation of either Thr-641 or Ser-660 to Ala in PKCbetaII abolished sequestration of PKC, implying the indispensable roles of phosphorylation of PKCalpha/betaII at those sites for their translocation to the pericentrion. Reciprocally, a point mutation of Thr-641 to Glu, which mimics phosphorylation, in PKCbetaII overcame the inhibitory effects of ceramide on PKC translocation in PMA-stimulated MCF-7 cells. Therefore, the results demonstrate a novel role for carboxyl-terminal phosphorylation of PKCalpha/betaII in the translocation of PKC to the pericentrion, and they disclose specific regulation of PKC autophosphorylation by ceramide through the activation of specific isoforms of protein phosphatase 1.  相似文献   

19.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

20.
Elucidation of isoenzyme-specific functions of individual protein kinase C (PKC) isoenzymes has emerged as an important goal in the study of this family of kinases, but this task has been complicated by modest substrate specificity and high homology among the individual members of each PKC subfamily. The classical PKCbetaI and PKCbetaII isoenzymes provide a unique opportunity because they are the alternatively spliced products of the beta gene and are 100% identical except for the last 50 of 52 amino acids. In this study, it is shown that green fluorescent protein-tagged PKCbetaII and not PKCbetaI translocates to a recently described juxtanuclear site of localization for PKCalpha and PKCbetaII isoenzymes that arises with sustained stimulation of PKC. Mechanistically, translocation of PKCbetaII to the juxtanuclear region required kinase activity. PKCbetaII, but not PKCbetaI, was found to activate phospholipase D within this time frame. Inhibitors of phospholipase D (1-butanol and a dominant negative construct) prevented the translocation of PKCbetaII to the juxtanuclear region but not to the plasma membrane, thus demonstrating a role for phospholipase D in the juxtanuclear translocation of PKCbetaII. Taken together, these results define specific biochemical and cellular actions of PKCbetaII when compared with PKCbetaI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号