首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
Metabolomics offers the potential to assess the effects of toxicants on metabolite levels. To fully realize this potential, a robust analytical workflow for identifying and quantifying treatment-elicited changes in metabolite levels by nuclear magnetic resonance (NMR) spectrometry has been developed that isolates and aligns spectral regions across treatment and vehicle groups to facilitate analytical comparisons. The method excludes noise regions from the resulting reduced spectra, significantly reducing data size. Principal components analysis (PCA) identifies data clusters associated with experimental parameters. Cluster-centroid scores, derived from the principal components that separate treatment from vehicle samples, are used to reconstruct the mean spectral estimates for each treatment and vehicle group. Peak amplitudes are determined by scanning the reconstructed mean spectral estimates. Confidence levels from Mann–Whitney order statistics and amplitude change ratios are used to identify treatment-related changes in peak amplitudes. As a demonstration of the method, analysis of 13C NMR data from hepatic lipid extracts of immature, ovariectomized C57BL/6 mice treated with 30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or sesame oil vehicle, sacrificed at 72, 120, or 168 h, identified 152 salient peaks. PCA clustering showed a prominent treatment effect at all three time points studied, and very little difference between time points of treated animals. Phenotypic differences between two animal cohorts were also observed. Based on spectral peak identification, hepatic lipid extracts from treated animals exhibited redistribution of unsaturated fatty acids, cholesterols, and triacylglycerols. This method identified significant changes in peaks without the loss of information associated with spectral binning, increasing the likelihood of identifying treatment-elicited metabolite changes.  相似文献   

2.
High-resolution magic angle spinning (MAS) (1)H NMR spectroscopy has been used to investigate the biochemical composition of whole rat renal cortex and liver tissue samples. The effects of a number of sample preparation procedures and experimental variables have been investigated systematically in order to optimize spectral quality and maximize information recovery. These variables include the effects of changing the sample volume in the MAS rotor, snap-freezing the samples, and the effect of organ perfusion with deuterated saline solution prior to MAS NMR analysis. Also, the overall biochemical stability of liver and kidney tissue MAS NMR spectra was investigated under different temperature conditions. We demonstrate improved resolution and line shape of MAS NMR spectra obtained from small spherical tissue volume (12 microl) rotor inserts compared to 65 microl cylindrical samples directly inserted into the MAS rotors. D(2)O saline perfusion of the in situ afferent vascular tree of the tissue immediately postmortem also improves line shape in MAS NMR spectra. Snap-freezing resulted in increased signal intensities from alpha-amino acids (e.g., valine) in tissue together with decreases in renal osmolytes, such as myo-inositol. A decrease in triglyceride levels was observed in renal cortex following stasis on ice and in the MAS rotor (303 K for 4 h). This work indicates that different tissues have differential metabolic stabilities in (1)H MAS NMR experiments and that careful attention to sample preparation is required to minimize artifacts and maintain spectral quality.  相似文献   

3.
Mequindox is used as a veterinary antibiotic drug. As part of systematic investigations into mequindox as a veterinary medicine and its subsequent applications in food safety, we conducted the investigation to assess the metabolic response of mice to mequindox using metabonomics, which combines NMR metabolic profiles of biofluids or tissues and pattern recognition data analysis. In this study, we delivered a single dose of mequindox to mice with dosage levels of 15, 75, and 350 mg/kg body weight and collected urine samples over a 7 day period, as well as plasma and liver tissues at 7 days postdose. Principal components analysis (PCA) and orthogonal projection to latent structure discriminant analysis (O-PLS-DA) were performed on (1)H NMR spectra of biofluids and liver, showing that low dose levels of mequindox exposure had no adverse effects, consistent with histological observations of the liver. High and moderate levels of mequindox exposure caused suppression of glycolysis and stimulation of fatty acid oxidation accompanied with increased levels of oxidative stress. Our metabonomic analyses also showed disruption of amino acid metabolism, consistent with liver damage observed from histopathological examinations. Furthermore, mequindox perturbed gut microbial activity manifested in the altered excretion of urinary trimethylamine (TMA), trimethylamine-N-oxide (TMAO), hippurate, phenylacetylglycine (PAG), and phenylacetate. The putative gut microbial function may also contribute to the assembly and secretion of very-low-density lipoproteins from the liver to the plasma. Our work provides important insights on the metabolic responses of mequindox.  相似文献   

4.
The effects of administration of galactosamine (GalN) and glucosamine (GlcN) on the levels of UDP-sugars and hexose monophosphates in rat livers were studied by a variety of 31P NMR methods. The flux of metabolites in the liver was monitored by in vivo NMR and showed elevated levels of UDP-sugars, and even greater increases in resonances at 4.6 ppm for GlcN treatment and at 2.0 ppm for GalN treatment. The individual compounds corresponding to these changes were identified in PCA liver extracts by 31P-[1H] two-dimensional relay spectroscopy with a HOHAHA-type 1H spin-lock. This method of transferring proton magnetization allows for nearly all of the proton chemical shifts to be observed for the hexose moiety of a UDP-sugar present in a complex mixture. The UDP-sugars in the extracts from treated rats were predominantly UDP-hexosamines. Relay spectra were also used to determine that GalN-1-P was the major component (16.0 mumol/g of liver) of the GalN-treated liver, while both alpha and beta anomers of GlcNAc-6-P were readily identified as the major hexose monophosphates in the GlcN experiment. Spectra from the 1H dimension of relay experiments conducted on extracts were nearly superimposable on relay spectra obtained under the same conditions for mixtures of standard compounds of known structure. UDP-GlcN and UDP-GalN were not commercially available, but their presence was established in the extracts after GalN treatment by obtaining relay spectra for a mixture of the compounds produced in situ enzymatically, without purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Single low and high doses of several compounds with known renal toxic effects (para-aminophenol, puromycin aminonucleoside, sodium chromate, and hexachlorobutadiene,) or known liver toxic effects (galactosamine, allyl alcohol, and thioacetamide) were administered to male Wistar rats in groups of 4 or 8 for each compound. Predose urine samples (Day 0) and samples from post-dosing (Days 1–4) were collected for each rat and monitored by 1D 1H NMR. Principal component analysis (PCA) of the NMR spectra was used to investigate differences between dose levels for each compound individually. The findings from PCA at both dose levels for each compound were examined in the context of the corresponding clinical chemistry and pathology data collected during the study. The PCA clustering of NMR spectra from rats dosed with each individual compound were shown to be associated with the measured levels of creatinine, BUN, AST, ALT and histopathology findings. Finally, scaled-to-maximum, aligned, and reduced trajectories (SMART) analysis was applied to compare the temporal metabolic trajectories obtained for each animal at each dose level of the administered compounds. By day 4, the SMART trajectories for allyl alcohol and hexachlorobutadiene had returned to predose levels indicating a recovery response, however, the high dose SMART trajectories for para-aminophenol, puromycin aminonucleoside, sodium chromate, and galactosamine did not appear to return to predose levels indicating a prolonged toxic effect.  相似文献   

6.
High-resolution magic-angle spinning (MAS) 1H nuclear magnetic resonance spectroscopy has been employed to characterize the metabolite composition (i.e., metabonome) of the human hepatocellular carcinoma (HCC) tumor in combination with principal component analysis (PCA). The results showed that (a) the metabonomes of both low-grade HCC and high-grade HCC tumors differ markedly from that of the adjacent non-involved tissues; and (b) low-grade HCC tumors have clear differences in metabonome from that of the high-grade HCC tumors. Compared with the non-involved adjacent liver tissues, HCC tumors had elevated levels of lactate, glutamate, glutamine, glycine, leucine, alanine, choline metabolites, and phosphorylethanolamine (PE), but declined levels of triglycerides, glucose, and glycogen. The levels of lactate, amino acids including glutamate, glutamine, glycine, leucine and alanine, choline and phosphorylethanolamine (PE) were higher but the levels of PC, GPC, triglycerides, glucose, and glycogen were lower in high-grade HCC than in low-grade HCC tumors. Compared with non-cirrhotic, low-grade HCC tumors, the cirrhotic, low-grade HCC tumors showed statistically significant increases in lactate, phosphocholine (PC), and glycerophosphocholine (GPC). The necrosis in HCC tumors resulted in a drastic increase in the levels of observable triglycerides, signals of which dominated their 1H NMR spectra. These results indicated that HRMAS combined with PCA offers a useful tool for understanding the tumor biochemistry and classification of liver tumor tissues; such tool may also have some potential for liver tumor diagnosis and prognosis even when some other disease processes are present.  相似文献   

7.
Oxidative lipid metabolism as a result of acute cyanobacterial toxin-induced hepatotoxicity was monitored in male Sprague-Dawley rats using electron spin resonance (ESR) spectroscopy and image-guided proton nuclear magnetic resonance (1H-NMR) spectroscopy. ESR spectroscopy, coupled with spin trapping, was used to trap and detect lipid-derived radicals, formed in rat livers after acute in vivo exposure (LD50) to the cyanobacterial toxin, microcystin-LR (MCLR). A statistically significant increase in the levels (spectral peak integrals) of lipid radicals was detected in MCLR-treated livers (p < 0.05) (n = 8), in comparison to control livers (n = 6). In order to monitor lipid metabolism, before and for a period of 3 h, following toxin exposure, in vivo proton image-guided NMR spectroscopy was used. A statistically significant decrease in the levels of lipid methylene hydrogen resonances (spectral peak integrals) was observed from MCLR-treated livers (n = 6) 2 and 3 h post-exposure (p < 0.05), in comparison to controls (n = 6). Image-guided NMR spectroscopy was also used to detect significant decreasing levels of in vivo glutamine/glutamate, following exposure to MCLR. Biochemical assessment of perchloric extracts of liver glutamine and glutamate levels correlated with NMR spectroscopy results. Lactate levels measured as perchloric acid extracts, were also found to significantly decrease. In addition, assessment of serum enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were used to confirm hepatotoxicity (n = 20). This study strongly suggests that oxidative stress related processes are involved in in vivo microcystin-induced hepatotoxicity in mammals, and may play an integral role in MCLR-induced toxicity.  相似文献   

8.
An immunofluorescence study using unfixed cryostat sections of rat pituitary glands was carried out on sera from 34 patients with Hashimoto's thyroiditis, 28 patients with Graves' disease, 10 patients with thyroid adenoma and 50 healthy subjects. After absorption of sera with rat liver tissues, 19 of 34 patients retained reactivity to anterior pituitary cell antibodies (PCA, 55.8%). On the other hand, immunofluorescence in anterior pituitary cells was faint and detected in only 2 of 28 patients with Graves' disease (7.1%) after absorption of their sera with rat liver aceton powder. A similar result was also obtained when PCA were compared in the sera of Hashimoto's thyroiditis and Graves' disease with high titers of thyroid microsomal autoantibodies. PCA were detected neither in the sera of patients with thyroid adenoma nor in the healthy subjects. The present study suggests that PCA were considerably more prevalent in Hashimoto's thyroiditis than in Graves' disease.  相似文献   

9.
Metabonomic methods utilizing (1)H NMR spectroscopy and pattern recognition analysis (NMR-PR) have been applied to investigate biochemical variation in a control population of female rats over time in relation to diurnal and estrus cycle fluctuations. Urine samples were collected twice daily (6 AM-6 PM and 6 PM-6 AM) from female rats (n = 10) for a period of 10 days. (1)H NMR spectroscopic analysis and PR were performed on each sample. Subtle differences in the endogenous metabolite excretion profiles of urine samples at the various stages of the estrus cycle were observed. The main inherent metabolic clustering in the principal components analysis (PCA) maps was related to interrat variation and was observed in the first two principal components (PCs), accounting for 66% of the variance in these data. Separation of urinary data according to time of sampling (day and night) was achieved in the lower PCs. Some of the differences in the urinary profiles of day and night samples causing this separation were attributed to the increase in metabolic activity of the rat during the night. Individual rat data were also mapped as a function of time, using PCA, to produce a metabolic trajectory, which in a number of cases facilitated separation of one or more stages of the estrus cycle. Several of the fluctuations observed between urine samples collected during the different stages of the estrus cycle may be related to hormone levels. Although variation in metabolite profiles relating to both diurnal and hormonal variation could be detected these perturbations were minor compared with the effects observed due to interrat variation. This is the first time that a hormonal cycle has been described for individuals based on NMR spectroscopic and multivariate analysis of metabolic data and shows the value of metabonomic methods in the investigation of physiological variation and rhythms.  相似文献   

10.
A new 1H NMR pulse sequence is described that combines water suppression with the selective observation of signals from coupled spin systems. The pulse sequence is easy to set up and compensates for pulse width inhomogeneity in the biological sample. Suppression of the water signal is achieved by pulses that return the water spins to their equilibrium position; spectral editing is based on the J modulation present in spin-echo spectra and its inhibition by coherent decoupling at one of the resonances of the spin system of interest. The pulse sequence, which was designed for 1H NMR spectroscopy of tissue, was tested at 470 MHz on excised frog muscle and rat brain. The lactate methyl resonance of caffeine-treated frog sartorius muscle was observed selectively by irradiation at the position of its alcoholic proton. The terminal methyl signal of linolenic acid, along with other fatty acids of the linolenic series (first double bond in the omega-3 position), was observed selectively by irradiation at the position of its omega-1 methylene group. 1H NMR spectra of rat brain were edited to reveal the terminal methyl of either linolenic series or all other fatty acids. The results suggest that the terminal methyl groups of fatty acids of the linolenic series (mostly docosahexaenoic acid, 22:6) have higher mobility than those of all other fatty acids.  相似文献   

11.
Apolipoprotein B mRNA editing in vivo is subject to tissue specific, developmental and metabolic regulation. We demonstrate for the first time that the metabolic modulation of apo B mRNA editing activity can be assayed in vitro using rat liver extracts. The editing activity in extracts from 48h-fasted rats was suppressed relative to that of normal chow-fed rats. Refeeding with a high-sucrose fat-free chow for 48h stimulated liver in vitro editing activity to approximately three times that of control liver extracts. The physical properties of editosomes assembled in extracts from fasted/refed rats differed from those assembled in control or fasted rat liver extracts. Polypeptide analysis revealed quantitative alterations of several proteins in each treatment group suggesting a complex regulatory process. The data corroborate those from in vivo studies and suggest the potential of the in vitro system in studying factors responsible for metabolic regulation of apo B mRNA editing.  相似文献   

12.
A potential role for NF1 mRNA editing in the pathogenesis of NF1 tumors.   总被引:10,自引:3,他引:7  
Neurofibromatosis type I (NF1) is a common disorder that predisposes to neoplasia in tissues derived from the embryonic neural crest. The NF1 gene encodes a tumor suppressor that most likely acts through the interaction of its GTPase-activating protein (GAP)-related domain (GRD) with the product of the ras protooncogene. We have previously identified a site in the NF1 mRNA, within the first half of the NF1 GRD, which undergoes base-modification editing. Editing at that site changes a C to a U, thereby introducing an in-frame stop codon. NF1 RNA editing has been detected in all cell types studied, to date. In order to investigate the role played by editing in NF1 tumorigenesis, we analyzed RNA from 19 NF1 and 4 non-NF1 tumors. We observed varying levels of NF1 mRNA editing in different tumors, with a higher range of editing levels in more malignant tumors (e.g., neurofibrosarcomas) compared to benign tumors (cutaneous neurofibromas). Plexiform neurofibromas have an intermediate range of levels of NF1 mRNA editing. We also compared tumor and nontumor tissues from several NF1 individuals, to determine the extent of variability present in the constitutional levels of NF1 mRNA editing and to determine whether higher levels are present in tumors. The constitutional levels of NF1 mRNA editing varied slightly but were consistent with the levels observed in non-NF1 individuals. In every case, there was a greater level of NF1 mRNA editing in the tumor than in the nontumor tissue from the same patient. These results suggest that inappropriately high levels of NF1 mRNA editing does play a role in NF1 tumorigenesis and that editing may result in the functional equivalent of biallelic inactivation of the NF1 tumor suppressor.  相似文献   

13.
Susceptibility of four major rat tissues to oxidative damage in terms of lipid peroxidation induced by in vitro by ascorbate-Fe2+ in homogenates and mitochondria has been examined. Lipid peroxidation, as assessed by thiobarbituric acid reactive substances (TBARS) and conjugated dienes was maximum in brain followed by liver, kidney and heart. However, the time course of lipid peroxidation showed different patterns in tissues examined. The higher susceptibilities of brain and liver can be explained by substrate availability and to a lesser extent the level of antioxidants. The differences observed in the tissues studied may reflect their susceptibility to degenerative diseases and xenobiotic toxicity which are considered as a result of oxidative damage to membranes.  相似文献   

14.
Thyroid dysfunctions are associated with many pathological signs in the body. One of these is lipid peroxidation that develops due to over- or under-secretion of thyroid hormones. The present study was conducted to determine lipid peroxidation that develops in different tissues including the brain, liver and heart of rats in experimental hyperthyroidism induced by L-thyroxin. The study was carried out on 30 male Sprague-Dawley rats. They were divided into three groups as control, sham hyperthyroidism and hyperthyroidism. Malondialdehyde (MDA) and glutathione (GSH) levels in rat tissues were determined at the end of a 3-weeks period of L-thyroxin administration. It was observed that MDA levels in the hyperthyroidism group were significantly higher in the cerebral cortex, liver and ventriculer tissue of heart (p < 0.001) than in the control and in sham hyperthyroidism groups. GSH levels were higher in the hyperthyroidism group than in control and sham hyperthyroidism groups in all tissues (p < 0.001). Results demonstrate that hyperthyroidism induced by L-thyroxin activates both oxidant and antioxidant systems in cerebral, hepatic and cardiac tissues. However, the increase in antioxidant activity cannot adequately prevent oxidative damage.  相似文献   

15.
Phosphatic metabolite (perchloric acid extractable) concentrations of cerebral tissues were analyzed by phosphorus-31 nuclear magnetic resonance (P-31 NMR) spectroscopy following external perfusion of the isolated rat brain (30 min or 60 min) under the following conditions: (a) constant perfusion pressure with either fluorocarbon- or erythrocyte-based medium, and (b) constant perfusate flow rate (3 ml/min) with the erythrocyte-based medium. Metabolite concentrations of control perfused brains were compared with those in nonperfused controls to provide a basis for detecting any qualitative or quantitative changes in cerebral metabolite composition. Metabolic responses of perfused brains to ischemia (incomplete ischemia, 83% reduction in flow for 10 min; transient complete ischemia for 1.5 or 2 min) were evaluated immediately after the ischemic episode and at selected time points during reperfusion (3 and 15 min). Alterations in cerebral metabolite levels induced by hypoxia were analyzed using a nonperfused rat brain model. Irrespective of the perfusion method employed, the phosphatic metabolites of control perfused rat brains were identical quantitatively to those of the nonperfused controls. Cerebral ischemia resulted in significantly increased levels of ADP, AMP + IMP, Pi, fructose 1,6-diphosphate, and glycerol 3-phosphate (global ischemia only), whereas ATP and phosphocreatine (PCr) levels declined significantly. The magnitude of these changes varied with the severity of the ischemia; however, following 15 min of control reperfusion metabolite levels had reverted to preischemic values. Significant perturbations in tissue phosphoethanolamine (3.84 delta resonance) content were evident at various time points during ischemia and postischemic recovery, which varied according to the perfusion conditions. In contrast to the changes observed in response to ischemia, hypoxia affected only cerebral high-energy phosphate levels. ATP and PCr levels were reduced, while a concomitant, essentially equimolar, increase in Pi and ADP was observed. The present studies indicate that in terms of phosphatic metabolites, the control equilibrated isolated perfused rat brain is quantitatively and qualitatively indistinguishable from the nonperfused rat brain in vivo regardless of the perfusion conditions (constant flow versus constant pressure). The metabolic responses to ischemia and hypoxia, as measured by P-31 NMR, were consistent with the pattern of changes reported elsewhere. Overall, P-31 NMR spectroscopic evaluation of the intact rat brain provides a potential experimental context for dynamic measures of cerebral metabolism under exogenously controlled conditions. Th  相似文献   

16.
The toxic effects of Al(3+) have been studied in 90-days AlCl(3) orally treated male albino rats (n = 7) using (1)H NMR spectroscopy-based metabolic profile of rat serum and urine, serum enzyme tests, behavioral impairment, and histopathology of kidney and liver. Metabolic profile of 90-days Al(3+)-treated rat sera showed significantly elevated levels of alanine, glutamine, beta-hydroxy-butyrate, and acetoacetate and significantly decreased level of acetone when compared with that of control rats. However, metabolic profile of 90-days Al(3+)-treated rat urine showed significantly decreased levels of citrate, creatinine, allantoin, trans-aconitate, and succinate and significantly increased level of acetate when compared to control rats. The overall perturbations observed in the metabolic profile of serum and urine demonstrate the impairment in the tricarboxylic acid cycle, liver and kidney metabolism, which was further reinstated by clinical chemistry and histopathological observations. Moreover, "in vivo" behavioral impairment has also been observed as the indication of aluminum neurotoxicity.  相似文献   

17.
Regulation of rat growth hormone receptor gene expression   总被引:13,自引:0,他引:13  
A cDNA encoding the growth hormone (GH) receptor was cloned from rat liver. Both the nucleotide and translated amino acid sequence share greater than 70% similarity with the GH receptors from rabbit and human. An RNA probe was generated from this sequence for use in a solution hybridization assay to quantitate GH receptor mRNA expression in rat tissues. Expression was detected in 9/12 tissues examined, with the highest levels observed in the liver. Expression in liver, kidney, heart and muscle was developmentally regulated, being low at birth and rising to adult levels in 5 weeks. No difference was observed between hepatic expression in males and females, although livers from pregnant rats had elevated levels. Hypophysectomy and GH treatment did not affect hepatic GH receptor mRNA levels.  相似文献   

18.
The 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal (HNE-dGp-adducts) were quantitated in tissues of rats treated with trans-4-hydroxy-2-nonenal (HNE) or carbon tetrachloride, respectively, using a 32P-postlabeling method. The method development was based on chemically synthesized HNE-1,N2-propanodeoxyguanosine adduct standard, which was characterized by NMR and mass spectra. The adducts were enriched by Nuclease P1. They were subsequently reacted with gamma-32P-ATP to give the respective 3'-5'-bisphosphates, which were two-directionally separated on PEI-cellulose-TLC and quantitated by autoradiography. The labeling efficiency for the adduct standard was 27%, and the recovery of spiked amounts of adduct standard in the enzymatical procedure was about 80%. Internal standard was used to eliminate methodological variations. The determination of the limit of quantitation in DNA from rat tissues by spiking of HNE-dGp-adduct standard revealed a sensitivity of about 20 HNE-dGp-adducts/10(9) normal nucleotides. Background levels of HNE-dGp-adducts in tissues of rats including liver, kidney, lung, colon and forestomach were found in the range of 18-158 adducts/10(9) nucleotides with relatively high adduct levels in the liver and low adduct levels in kidney, lung and colon. These background levels were statistically significantly increased by the factor of 2 in liver, lung, colon and forestomach after induction of lipid peroxidation by carbon tetrachloride. The finding that background HNE-dGp-adduct levels may be in context with different metabolic activities of the tissues and the increase of HNE-dGp-adduct levels after application of carbon tetrachloride indicate that HNE-dGp-adducts are an endogenous lesion and that they are probably formed from radical initiated lipid peroxidation.  相似文献   

19.
20.
Oxidative stress may affect many cellular and physiological processes including gene expression, cell growth, and cell death. In the recent study, we aimed to investigate whether 900 MHz pulse-modulated radiofrequency (RF) fields induce oxidative damage on lung, heart and liver tissues. We assessed oxidative damage by investigating lipid peroxidation (malondialdehyde, MDA), nitric oxide (NOx) and glutathione (GSH) levels which are the indicators of tissue toxicity. A total of 30 male Wistar albino rats were used in this study. Rats were divided randomly into three groups; control group (n = 10), sham group (device off, n = 10) and 900 MHz pulsed-modulated RF radiation group (n = 10). The RF rats were exposed to 900 MHz pulsed modulated RF radiation at a specific absorption rate (SAR) level of 1.20 W/kg 20 min/day for three weeks. MDA and NOx levels were increased significantly in liver, lung, testis and heart tissues of the exposed group compared to sham and control groups (p < 0.05). Conversely GSH levels were significantly lower in exposed rat tissues (p < 0.05). No significantly difference was observed between sham and control groups. Results of our study showed that pulse-modulated RF radiation causes oxidative injury in liver, lung, testis and heart tissues mediated by lipid peroxidation, increased level of NOx and suppression of antioxidant defense mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号