首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The filoviruses, which include the marburg- and ebolaviruses, have caused multiple outbreaks among humans this decade. Antibodies against the filovirus surface glycoprotein (GP) have been shown to provide life-saving therapy in nonhuman primates, but such antibodies are generally virus-specific. Many monoclonal antibodies (mAbs) have been described against Ebola virus. In contrast, relatively few have been described against Marburg virus. Here we present ten mAbs elicited by immunization of mice using recombinant mucin-deleted GPs from different Marburg virus (MARV) strains. Surprisingly, two of the mAbs raised against MARV GP also cross-react with the mucin-deleted GP cores of all tested ebolaviruses (Ebola, Sudan, Bundibugyo, Reston), but these epitopes are masked differently by the mucin-like domains themselves. The most efficacious mAbs in this panel were found to recognize a novel “wing” feature on the GP2 subunit that is unique to Marburg and does not exist in Ebola. Two of these anti-wing antibodies confer 90 and 100% protection, respectively, one hour post-exposure in mice challenged with MARV.  相似文献   

2.
The envelope glycoprotein (GP) of Marburg virus (MARV) and Ebola virus (EBOV) is responsible for virus entry into host cells and is known as the only target of neutralizing antibodies. While knowledge about EBOV-neutralizing antibodies and the mechanism for the neutralization of infectivity is being accumulated gradually, little is known about antibodies that can efficiently regulate MARV infectivity. Here we show that MARV GP-specific monoclonal antibodies AGP127-8 (IgG1) and MGP72-17 (IgM), which do not inhibit the GP-mediated entry of MARV into host cells, drastically reduced the budding and release of progeny viruses from infected cells. These antibodies similarly inhibited the formation of virus-like particles (VLPs) consisting of GP, the viral matrix protein, and nucleoprotein, whereas the Fab fragment of AGP127-8 showed no inhibitory effect. Morphological analyses revealed that filamentous VLPs were bunched on the surface of VLP-producing cells cultured in the presence of the antibodies. These results demonstrate a novel mechanism of the antibody-mediated inhibition of MARV budding, in which antibodies arrest unformed virus particles on the cell surface. Our data lead to the idea that such antibodies, like classical neutralizing antibodies, contribute to protective immunity against MARV and that the “classical” neutralizing activity is not the only indicator of a protective antibody that may be available for prophylactic and therapeutic use.  相似文献   

3.
Marburg virus (MARV), the causative agent of a severe hemorrhagic fever, has a characteristic filamentous morphology. Here we report that co-expression of MARV glycoprotein and matrix protein (VP40) in mammalian cells leads to spontaneous budding of filamentous particles strikingly similar to wild-type MARV. In addition, these particles elicit an immune response in BALB/c mice. The generation of non-replicating Marburg virus-like particles (VLPs) should significantly facilitate the research on molecular mechanisms of MARV assembly and release. Furthermore, VLPs may be an excellent vaccine candidate against Marburg infection.  相似文献   

4.
BackgroundEbola and Marburg viruses (family Filoviridae, genera Ebolavirus and Marburgvirus) cause haemorrhagic fevers in humans, often associated with high mortality rates. The presence of antibodies to Ebola virus (EBOV) and Marburg virus (MARV) has been reported in some African countries in individuals without a history of haemorrhagic fever. In this study, we present a MARV and EBOV seroprevalence study conducted amongst blood donors in the Republic of Congo and the analysis of risk factors for contact with EBOV.Conclusions/SignificanceThis MARV and EBOV serological survey performed in the Republic of Congo identifies a probable role for environmental determinants of exposure to EBOV. It highlights the requirement for extending our understanding of the ecological and epidemiological risk of bats (previously identified as a potential ecological reservoir) and birds as vectors of EBOV to humans, and characterising the protection potentially afforded by EBOV-specific antibodies as detected in blood donors.  相似文献   

5.
6.
Anti-mannotriose (Man3) antibodies were previously isolated from a Keio phage library displaying human single chain variable fragments (scFvs) using a neoglycolipid, Man3- dipalmitoylphosphatidylethanolamine. Of three genes constructed, the 5A3 clone was expressed in mouse myeloma NS0 cells as a conjugate with human IgG1 Fc (scFv-Fc) and characterized (Sakai, K., Shimizu, Y., Chiba, T., Matsumoto-Takasaki, A., Kusada, Y., Zhang, W., Nakata, M., Kojima, N., Toma, K., Takayanagi, A., Shimizu, N., and Fujita-Yamaguchi, Y. (2007) Biochemistry 46, 253–262; Zhang, W., Matsumoto-Takasaki, A., Kusada, Y., Sakaue, H., Sakai, K., Nakata, M., and Fujita-Yamaguchi, Y. (2007) Biochemistry 46, 263–270). Similarly, anti-Lex phages were screened from the same library with lacto-N-fucopentaose III (LNFPIII; Lex)-dipalmitoylphosphatidylethanolamine. Of five phage clones isolated, two scFv genes were constructed to express scFv-Fc proteins in NS0 cells. As was experienced with anti-Man3 scFv-Fc clones, only one anti-LNFPIII clone, 1F12, was successfully produced and purified as an scFv-Fc protein. Although anti-LNFPIII 1F12 and anti-Man3 5A3 scFv-Fc proteins were secreted into media, a decline in scFv-Fc production was observed with both stable clones during early passages. Transient expression of anti-LNFPIII and anti-Man3 scFv-Fc genes in COS-7 cells and subsequent analyses of scFv-Fc protein expression revealed accumulation of translated proteins in the endoplasmic reticulum for scFv-Fc proteins derived from clones that did not survive as stable clones. This report describes the following: (i) isolation of anti-LNFPIII scFv genes; (ii) purification of anti-LNFPIII scFv-Fc proteins from stably and transiently expressed cells; and (iii) extracellular or intracellular localization of two anti-LNFPIII and three anti-Man3 scFv-Fc proteins. The results suggest that expression of anti-Man3 and other anti-carbohydrate antibodies in mammalian cells is disadvantageous for cell growth.  相似文献   

7.
Insulin-like growth factors (IGF) I and II are potent mitogens for a variety of cancer cells. The proliferative and anti-apoptotic actions of IGF are mediated by the IGF-I receptor (IGF-IR), to which both IGF-I and IGF-II bind with high affinity. To investigate the mitogenic and anti-apoptotic activities of IGF-IR and to achieve better inhibition of IGF-IR function, single-chain antibodies against human IGF-IR (αIGF-IR scFvs) were constructed and expressed. IgG cDNA encoding variable regions of light and heavy chains (VL and VH) from mouse IgG were cloned from a hybridoma producing the 1H7 αIGF-IR monoclonal antibody [Li et al., Biochem Biophys Res Commun 196: 92–98 (1993)]. The splice-overlap extension polymerase chain reaction was used to assemble a gene encoding the αIGF-IR scFv, including the N-terminal signal peptide, VL, linker peptide, VH, and C-terminal DYKD tag. Two types of soluble αIGF-IR scFvs, a prototype αIGF-IR scFv and its alternative type αIGF-IR scFv-Fc, were constructed and expressed in murine myeloma cells. αIGF-IR scFv-Fc, containing the human IgG1 Fc domain, was stably expressed in NS0 myeloma cells, using a glutamine synthase selection system, and purified from the conditioned medium of stable clones by protein-A–agarose chromatography. Levels of αIGF-IR scFv-Fc expression ranged from 40 mg/l to 100 mg/l conditioned medium. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis under reducing and nonreducing conditions indicated that αIGF-IR scFv-Fc is a dimeric antibody. αIGF-IR scFv-Fc retained general characteristics of the parental 1H7 monoclonal antibody except that its binding affinity for IGF-IR was estimated to be approximately 108 M−1, which was one-order of magnitude lower than that of 1H7 monoclonal antibody. Injection of αIGF-IR scFv-Fc (500 μg/mouse, twice a week) significantly suppressed MCF-7 tumor growth in athymic mice. These results suggest that the αIGF-IR scFv-Fc is a first-generation recombinant αIGF-IR for the potential development of future αIGF-IR therapeutics. Received: 21 January 2000 / Accepted: 7 March 2000  相似文献   

8.
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARVPSAPmut). rMARVPSAPmut was attenuated by up to one log compared with recombinant wild-type MARV (rMARVwt), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARVPSAPmut-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARVwt-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARVwt-infected cells and was co-transported together with nucleocapsids. In contrast, rMARVPSAPmut nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.  相似文献   

9.
10.
The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling mice, identified many similarities between this model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time. This mouse-adapted MARV strain can now be used to develop and evaluate novel vaccines and therapeutics and may also help to provide a better understanding of the virulence factors associated with MARV.The filoviruses, Marburgvirus and Ebolavirus (MARV and EBOV), cause severe hemorrhagic fevers in humans and nonhuman primates (27). The incubation time is estimated to be 3 to 21 days, with human case fatality rates reaching 90% in some outbreaks. Filoviral hemorrhagic fevers are characterized by a nonspecific viral prodrome in the early stage of infection, including fever, headaches, and myalgia (27). This is followed by a hemorrhagic phase that can include development of a maculopapular rash, petechiae, and bleeding from the gums, intestines, and other mucosal surfaces. Death usually occurs within a week of initial symptoms and is thought to be due to uncontrolled viral replication, hypotension-induced shock caused by increased vascular permeability, and multiorgan failure, likely caused by disseminated intravascular coagulation and extensive necroses in the liver, spleen, intestine, and many other major organ systems (27).Human-derived MARVs (isolates Angola, Musoke, Ravn, and Ci67) do not kill immunocompetent adult mice (23). Furthermore, there are no published reports of any lethal mouse-adapted MARV. The current mouse-adapted EBOV, strain Zaire (ZEBOV), was developed by performing nine sequential passages of ZEBOV 1976 virus in suckling mice, followed by two sequential plaque picks. The resulting virus was uniformly lethal to mice inoculated intraperitoneally (i.p.). Pathological evaluation of infected mice identified many similarities and only a few differences between this model (7, 22) and infections in nonhuman primates (21).In a previous study, we took a slightly different approach to mouse adaptation of MARV and found that serially passaging virus recovered from the liver homogenates of MARV-Ravn-infected adult mice with severe combined immunodeficiency (SCID mice) resulted in the generation of SCID-adapted MARV-Ravn (scid-MARV) that rapidly killed SCID mice but did not kill adult immunocompetent mice (51). In this study, we used scid-MARV as starting material for the first round of infection of adult immunocompetent BALB/c mice and serially passaged virus recovered from the liver homogenates of the BALB/c mice. MARV-Ravn was chosen over SCID-adapted MARV-Ci67 or -Musoke because it adapted more rapidly to SCID mice than the other isolates did. This produced a mouse-adapted MARV-Ravn strain (ma-MARV) that could kill adult BALB/c mice. Serial sampling studies to characterize the pathogenesis of ma-MARV revealed that this model was very similar to the guinea pig and nonhuman primate Marburg hemorrhagic fever (MHF) models, including rapid viremia, induction of D-dimers (fibrin degradation products), thrombocytopenia, profound loss of circulating and tissue lymphocytes, and marked liver damage. Additionally, we compared the immunological responses of mice after infection with either nonadapted wild-type MARV-Ravn (wt-MARV) or ma-MARV. This mouse model of MARV infection not only should advance our understanding of MARV pathogenesis and immunity but also may play a critical role in discovery of therapeutics for MARV infection.  相似文献   

11.
Ebola virus (EBOV) and Marburg virus (MARV), belonging to the Filoviridae family, emerged four decades ago and caused severe viral hemorrhagic fever in human and other primates. As high as 50–90% mortality, filoviruses can cause significant threats to public health. However, so far no specific and efficient vaccine has been available, nor have other treatment methods proved to be effective. It is of great importance to detect these pathogens specific, rapidly and sensitively in order to control future filovirus outbreaks. Here, recent progresses in the development of detection and diagnosis methods for EBOV and MARV are summarized.  相似文献   

12.
The Egyptian fruit bat, Rousettus aegyptiacus, is currently regarded as a potential reservoir host for Marburg virus (MARV). However, the modes of transmission, the level of viral replication, tissue tropism and viral shedding pattern remains to be described. Captive-bred R. aegyptiacus, including adult males, females and pups were exposed to MARV by different inoculation routes. Blood, tissues, feces and urine from 9 bats inoculated by combination of nasal and oral routes were all negative for the virus and ELISA IgG antibody could not be demonstrated for up to 21 days post inoculation (p.i.). In 21 bats inoculated by a combination of intraperitoneal/subcutaneous route, viremia and the presence of MARV in different tissues was detected on days 2–9 p.i., and IgG antibody on days 9–21 p.i. In 3 bats inoculated subcutaneously, viremia was detected on days 5 and 8 (termination of experiment), with virus isolation from different organs. MARV could not be detected in urine, feces or oral swabs in any of the 3 experimental groups. However, it was detected in tissues which might contribute to horizontal or vertical transmission, e.g. lung, intestines, kidney, bladder, salivary glands, and female reproductive tract. Viremia lasting at least 5 days could also facilitate MARV mechanical transmission by blood sucking arthropods and infections of susceptible vertebrate hosts by direct contact with infected blood. All bats were clinically normal and no gross pathology was identified on post mortem examination. This work confirms the susceptibility of R. aegyptiacus to infection with MARV irrespective of sex and age and contributes to establishing a bat-filovirus experimental model. Further studies are required to uncover the mode of MARV transmission, and to investigate the putative role of R. aegyptiacus as a reservoir host.  相似文献   

13.
The filoviruses, Marburg virus (MARV) and Ebola virus, causes severe hemorrhagic fever with high mortality in humans and nonhuman primates. A promising filovirus vaccine under development is based on a recombinant vesicular stomatitis virus (rVSV) that expresses individual filovirus glycoproteins (GPs) in place of the VSV glycoprotein (G). These vaccines have shown 100% efficacy against filovirus infection in nonhuman primates when challenge occurs 28–35 days after a single injection immunization. Here, we examined the ability of a rVSV MARV-GP vaccine to provide protection when challenge occurs more than a year after vaccination. Cynomolgus macaques were immunized with rVSV-MARV-GP and challenged with MARV approximately 14 months after vaccination. Immunization resulted in the vaccine cohort of six animals having anti-MARV GP IgG throughout the pre-challenge period. Following MARV challenge none of the vaccinated animals showed any signs of clinical disease or viremia and all were completely protected from MARV infection. Two unvaccinated control animals exhibited signs consistent with MARV infection and both succumbed. Importantly, these data are the first to show 100% protective efficacy against any high dose filovirus challenge beyond 8 weeks after final vaccination. These findings demonstrate the durability of VSV-based filovirus vaccines.  相似文献   

14.
Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83–100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.  相似文献   

15.
Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d'Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia.  相似文献   

16.
Marburg virus (MARV) matrix protein VP40 plays a key role in virus assembly, recruiting nucleocapsids and the surface protein GP to filopodia, the sites of viral budding. In addition, VP40 is the only MARV protein able to induce the release of filamentous virus-like particles (VLPs) indicating its function in MARV budding. Here, we demonstrated that VP40 is phosphorylated and that tyrosine residues at positions 7, 10, 13 and 19 represent major phosphorylation acceptor sites. Mutagenesis of these tyrosine residues resulted in expression of a non-phosphorylatable form of VP40 (VP40(mut) ). VP40(mut) was able to bind to cellular membranes, produce filamentous VLPs, and inhibit interferon-induced gene expression similarly to wild-type VP40. However, VP40(mut) was specifically impaired in its ability to recruit nucleocapsid structures into filopodia, and released infectious VLPs (iVLPs) had low infectivity. These results indicated that tyrosine phosphorylation of VP40 is important for triggering the recruitment of nucleocapsids to the viral envelope.  相似文献   

17.
18.
Human antibodies specific for HCMV are currently considered as potential anti-HCMV therapeutic agents. In this study, we used a combinatorial human antibody library to isolate and characterize complete human monoclonal antibodies that effectively neutralize HCMV in a complement-dependent manner. One hundred and six clones were isolated in two independent screens using HCMV virions and recombinant glycoprotein B, gB654, as antigens. All of the clones recognized the same molecule gB and were classified into 14 groups based on the amino acid sequence of the VH region. Seven representative clones from these 14 groups had a strong gB654 binding affinity by surface plasmon resonance (SPR). A pairwise binding competition analysis suggested that there were three groups based on differences in the gB recognition sites. Although Fab fragments of the seven groups showed strong affinity for gB, none of the Fab fragments neutralized HCMV infectivity in vitro. In contrast, complete human IgG1 antibodies of at least three groups neutralized HCMV in a complement-dependent manner. These data suggest that potent therapeutic antibodies can be obtained from a human antibody library, including most of the functional antibodies that mediate humoral immunity to the selected pathogen.  相似文献   

19.
Mouse‐human chimeric monoclonal antibodies that could neutralize botulinum neurotoxins were developed and an attempt was made to establish mouse hybridoma cell clones that produced monoclonal antibodies that neutralized botulinum neurotoxin serotype A (BoNT/A). Four clones (2–4, 2–5, 9–4 and B1) were selected for chimerization on the basis of their neutralizing activity against BoNT/A and the cDNA of the variable regions of their heavy (VH) and light chains (VL) were fused with the upstream regions of the constant counterparts of human kappa light and gamma 1 heavy chain genes, respectively. CHO‐DG44 cells were transfected with these plasmids and mouse‐human chimeric antibodies (AC24, AC25, AC94 and ACB1) purified to examine their binding and neutralizing activities. Each chimeric antibody exhibited almost the same capability as each parent mouse mAb to bind and neutralize activities against BoNT/A. From the chimeric antibodies against BoNT/A, shuffling chimeric antibodies designed with replacement of their VH or VL domains were constructed. A shuffling antibody (AC2494) that derived its VH and VL domains from chimeric antibodies AC24 and AC94, respectively, showed much higher neutralizing activity than did other shuffling antibodies and parent counterparts. This result indicates that it is possible to build high‐potency neutralizing chimeric antibodies by selecting and shuffling VH and VL domains from a variety of repertoires. A shuffling chimeric antibody might be the best candidate for replacing horse antitoxin for inducing passive immunotherapy against botulism.  相似文献   

20.
We describe here the design, construction and validation of ALTHEA Gold Libraries?. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries? with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries? are a valuable source of specific, high affinity and highly stable antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号