首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3.  相似文献   

2.
Degradation of the cartilage proteoglycan aggrecan is an early event in the development of osteoarthritis, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 are considered to be the major aggrecan-degrading enzymes. We have recently found that ADAMTS-5 is rapidly endocytosed via low density lipoprotein receptor-related protein 1 (LRP1) and degraded by chondrocytes. Here we report that this regulatory mechanism also applies to ADAMTS-4, although its rate of endocytosis is slower than that of ADAMTS-5. Domain deletion mutagenesis of ADAMTS-4 identified that the cysteine-rich and spacer domains are responsible for binding to LRP1, whereas the thrombospondin 1 and spacer domains are responsible in ADAMTS-5. The estimated t½ value of ADAMTS-4 endocytosis was about 220 min, whereas that of ADAMTS-5 was 100 min. The difference in half-lives between the two enzymes is explained by the 13-fold lower affinity of ADAMTS-4 for LRP1 compared with that of ADAMTS-5. Studies using soluble ligand binding clusters of LRP1 showed that ADAMTS-4 binds to clusters II and IV with similar KD,app values of 98 and 73 nm, respectively, whereas ADAMTS-5 binds to cluster II, III, and IV with KD,app values of 3.5, 41, and 9 nm, respectively. Thus, ADAMTS-5 competitively inhibits ADAMTS-4 endocytosis but not vice versa. This study highlights that the affinity between a ligand and LRP1 dictates the rate of internalization and suggests that LRP1 is a major traffic controller of the two aggrecanases, especially under inflammatory conditions, where the protein levels of ADAMTS-4 increase, but those of ADAMTS-5 do not.  相似文献   

3.
ADAMTS-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are multidomain metalloproteinases belonging to the ADAMTS family. We have previously reported that human ADAMTS-5 has much higher aggrecanolytic activity than human ADAMTS-4. To investigate the different proteolytic activity of the two enzymes, we generated a series of chimeras by exchanging various non-catalytic domains of the two proteinases. We found that the catalytic domain of ADAMTS-5 has higher intrinsic catalytic ability than that of ADAMTS-4. The studies also demonstrated that the non-catalytic domains of ADAMTS-5 are more effective modifiers than those of ADAMTS-4, making both catalytic domains more active against aggrecan, an Escherichia coli-expressed interglobular domain of aggrecan and fibromodulin. Addition of the C-terminal thrombospondin type I motif of ADAMTS-5 to the C terminus of ADAMTS-4 increased the activity of ADAMTS-4 against aggrecan and fibromodulin severalfold. In contrast to previous reports (Kashiwagi, M., Enghild, J. J., Gendron, C., Hughes, C., Caterson, B., Itoh, Y., and Nagase, H. (2004) J. Biol. Chem. 279, 10109-10119 and Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. (2004) J. Biol. Chem. 279, 10042-10051), our detailed investigation of the role of the C-terminal spacer domain of ADAMTS-4 indicated that full-length ADAMTS-4 is approximately 20-times more active against aggrecan than its spacer domain deletion mutant, even at the Glu373-Ala374 site of the interglobular domain. This discrepancy is most likely due to selective inhibition of full-length ADAMTS-4 by heparin, particularly for cleavage at the Glu373-Ala374 bond. However, removal of the spacer domain from ADAMTS-4 greatly enhanced more general proteolytic activity against non-aggrecan substrates, e.g. E. coli-expressed interglobular domain, fibromodulin, and carboxymethylated transferrin.  相似文献   

4.
Bone morphogenetic proteins (BMPs) and Wnts are important signaling protein families with key roles in embryologic, patterning, development, and tissue remodeling in growth. BMP and Wnt-β-catenin are highly evolutionarily conserved pathways that, though often regulating similar cellular events, are independent signaling mechanisms that can have complementary or antagonistic effects depending on various factors, including cell type and developmental stage. Although BMP and Wnt-β-catenin have the ability to act entirely independently, there is a developing body of evidence for specific extra- and intra-cellular molecular interactions and crosstalk that occur between BMP and Wnt-β-catenin signaling and that again this may be cell type-specific. In the previous issue of Arthritis Research & Therapy, Papathanasiou and colleagues provide novel insights into the role and direct interaction of BMP2 and canonical Wnt-β-catenin signaling in regulating chondrocyte hypertrophy and matrix metalloproteinase/a disintegrin like and metalloproteinase with thrombospondin type I motif (MMP/ADAMTS) synthesis in osteoarthritis.In the previous issue of Arthritis Research & Therapy, Papathanasiou and colleagues [1] provide novel insights into the role and direct interaction of bone morphogenetic protein 2 (BMP2) and canonical Wnt-β-catenin signaling in regulating chondrocyte hypertrophy and matrix metalloproteinase (MMP)/aggrecanolytic ADAMTS (a disintegrin like and metalloproteinase with thrombospondin type I motif) synthesis in osteoarthritis (OA). OA is the most common cause of joint pain and disability, and with increasing age and obesity of the population, the already major socioeconomic importance will continue to increase. Currently, in most Western cultures, OA afflicts more than 10% of the entire population and over a third of those over 65; an estimated 25 to 30 million people in the US suffer from this disease. The central pathological feature of OA is often considered to be the progressive destruction of articular cartilage that normally provides the load-bearing surface in the joint. Much has been learned in recent years about the mechanisms that drive cartilage matrix breakdown and loss in OA, and chondrocyte-derived metalloproteinases, particularly the ADAMTS and collagenolytic MMPs, have a key role. It is evident that a phenotypic shift in the mature articular chondrocyte to a cell type that displays many characteristics typical of hypertrophic cells in the lower zones of the growth plate is a typical feature of OA and is associated with the progressive cartilage breakdown observed (reviewed in [2]). Less clearly understood are the specific signaling pathways involved in regulating the chondrocyte phenotype, how they interact, and whether this changes in health and in diseases such as OA.BMPs and Wnts are important signaling protein families with key roles in embryologic, patterning, development, and tissue remodeling in growth. BMP and Wnt-β-catenin are highly evolutionarily conserved pathways that, though often regulating similar cellular events, are independent signaling mechanisms that can have complementary or antagonistic effects depending on various factors, including cell type and developmental stage (reviewed in [3]). Although BMP and Wnt-β-catenin have the ability to act entirely independently, there is a developing body of evidence for specific extra-and intra-cellular molecular interactions and crosstalk that occur between BMP and Wnt-β-catenin signaling and that again may be cell type-specific [3]. In addition to having a key role in development, BMPs and Wnts are emerging as critical regulators of bone and cartilage homeostasis in the adult and, importantly, in the onset and progression of musculoskeletal diseases.BMPs are multi-functional growth factors that belong to the transforming growth factor-β super family. Evidence suggests that BMP signaling is mediated primarily through the canonical BMP-Smad pathway in chondrocytes. BMPs bind the type II receptor and phosphorylate type I serine or threonine receptors, which subsequently phosphorylate Smad1, Smad5, and Smad8. BMPs are known to induce human mesenchymal stem cells to differentiate into chondrocytes, and BMP2 is a crucial local factor for chondrocyte proliferation and maturation during endochondral ossification [4,5]. In their report, Papathanasiou and colleagues show not only that human end-stage OA chondrocytes produce BMP2 and BMP4 but also, importantly, that BMP2, but not BMP4, can drive expression of low-density lipoprotein receptor 5 (LRP5). LRP5 is one of the most important co-receptors in the canonical Wnt-β-catenin signaling pathway; binding of Wnt ligands to the frizzled/LRP co-receptor complex leads to β-catenin stabilization, nuclear translocation, and activation of target genes.There is a large body of evidence demonstrating the central role for Wnt signaling in regulating adult bone turnover; increased β-catenin activity inducing bone production and inhibition of soluble antagonists is an emerging therapeutic approach for osteoporotic and inflammatory bone loss [6,7]. In cartilage, Wnt-β-catenin signaling plays a dual role; activity is essential for chondrocyte proliferation and maintenance of their phenotypic characteristics [8], but excessive activity increases chondrocyte hypertrophy and expression of cartilage degrades metalloproteinases [9]. The effect may be cell type- specific, and Wnt-β-catenin activation is essential for maintenance of the superficial zone chondrocyte phenotype and proteoglycan 4 (lubricin) expression [8]. Inhibition of β-catenin rapidly leads to downregulation of lubricin and increased collagen × expression in superficial zone chondrocytes. In chondrocytes from human end-stage OA cartilage, activation of canonical Wnt-β-catenin signaling by Wnt-2B and Wnt-16 can drive MMP and aggrecanase production [9]. Understanding the mechanisms that regulate Wnt signaling in chondrocytes in OA may provide keys to controlling cartilage degradation.One of the most important findings by Papathanasiou and colleagues is the demonstration of a new and unique function of BMP2 in chondrocytes in acting as a regulator of canonical Wnt-β-catenin signaling. Treatment of both normal and OA primary human chondrocytes with BMP2 for 12 hours enhanced total β-catenin expression while diminishing the degradation of β-catenin (phospho-β-catenin). This was accompanied by significant increases in mRNA for key cartilage-degrading enzymes MMP-13 and ADAMTS-5 in concert with a shift toward a hypertrophic chondrocyte phenotype as measured by increased collagen × expression. This effect was absent in LRP5 small interfering RNA (siRNA) pretreated chondrocytes and did not occur with BMP4, suggesting the unique function of BMP2 in specifically upregulating LRP5 and augmenting Wnt-β-catenin signaling. The BMP2-driven increase in LRP5 mRNA was mediated through Smad1/5/8 binding to the LRP5 promoter.The paper by Papathanasiou and colleagues adds to the accumulating evidence that increased or perhaps excessive activation of canonical Wnt-β-catenin signaling in chondrocytes is detrimental and contributes to OA cartilage degradation. Therapeutic approaches to block or suppress canonical Wnt-β-catenin signaling may protect cartilage damage in end-stage OA. There are many naturally occurring Wnt-β-catenin signaling antagonists, including dickkopf 1 (DKK1), secreted frizzled-related proteins (sFRPs), and sclerostin (SOST). Evidence suggests that circulating DKK1 levels negatively correlate with biomarkers of cartilage breakdown in patients with OA [10]; sFRP3 knockout mice have augmented cartilage proteoglycan loss in a collagenase-induced instability model of arthritis [11], and co-treatment of SOST with pro-inflammatory cytokines can attenuate cartilage matrix breakdown [12]. The role of SOST is interesting in light of the interaction between BMP2 and Wnt signaling pathways reported by Papathanasiou and colleagues. It appears that SOST can also function as a BMP antagonist in osteoblast and osteocytes by binding intra-cellularly to BMP7 and targeting the growth factor for proteosomal degradation [13]. This provides yet another mechanism by which BMP and Wnt signaling pathways may directly interact; it will be interesting to see whether this effect of SOST on BMP7 (and possibly other BMPs) also occurs in chondrocytes, particularly in OA, where chondrocyte SOST expression is increased [12].The BMP and Wnt signaling pathways are critical in regulating chondrocytes and maintaining the health and integrity of cartilage matrix. In other cell types/organs such as those in bone, it is the combinatorial integration and complex crosstalk between these two pathways that are emerging as significant regulators of development and tissue homeostasis [3]. The findings by Papathanasiou and colleagues suggest that similar signaling pathway interactions may be important in chondrocytes and could play a role in the development and progression of OA. A better appreciation of chondrocyte regulatory mechanisms may provide new avenues for development of therapeutic approaches for the treatment of OA.  相似文献   

5.
6.
Aggrecan loss from mouse cartilage is predominantly because of ADAMTS-5 activity; however, the relative contribution of other proteolytic and nonproteolytic processes to this loss is not clear. This is the first study to compare aggrecan loss with aggrecan processing in mice with single and double deletions of ADAMTS-4 and -5 activity (Deltacat). Cartilage explants harvested from single and double ADAMTS-4 and -5 Deltacat mice were cultured with or without interleukin (IL)-1alpha or retinoic acid and analyzed for (i) the kinetics of (35)S-labeled aggrecan loss, (ii) the pattern of (35)S-labeled aggrecan fragments released into the media and retained in the matrix, (iii) the pattern of total aggrecan fragments released into the media and retained in the matrix, and (iv) specific cleavage sites within the interglobular and chondroitin sulfate-2 domains. The loss of radiolabeled aggrecan from ADAMTS-4/-5 Deltacat cartilage was less than that from ADAMTS-4, ADAMTS-5, or wild-type cartilage under nonstimulated conditions. IL-1alpha and retinoic acid stimulated radiolabeled aggrecan loss from wild-type and ADAMTS-4 Deltacat cartilage, but there was little effect on ADAMTS-5 cartilage. Proteolysis of aggrecan contributed most to its loss in wild-type, ADAMTS-4, and ADAMTS-5 Deltacat cartilage explants. The pattern of proteolytic processing of aggrecan in these cultures was consistent with that occurring in cartilage pathologies. Retinoic acid, but not IL-1alpha, stimulated radiolabeled aggrecan loss from ADAMTS-4/-5 Deltacat cartilage explants. Even though there was a 300% increase in aggrecan loss from ADAMTS-4/-5 Deltacat cartilage stimulated with retinoic acid, the loss was not associated with aggrecanase cleavage but with the release of predominantly intact aggrecan consistent with the phenotype of the ADAMTS-4/-5 Deltacat mouse. Our results show that chondrocytes have additional mechanism for the turnover of aggrecan and that when proteolytic mechanisms are blocked by ablation of aggrecanase activity, nonproteolytic mechanisms compensate to maintain cartilage homeostasis.  相似文献   

7.
Chondrogenesis is a process involving stem-cell differentiation through the coordinated effects of growth/differentiation factors and extracellular matrix (ECM) components. Recently, mesenchymal stem cells (MSCs) were found within the cartilage, which constitutes a specific niche composed of ECM proteins with unique features. Therefore, we hypothesized that the induction of MSC differentiation towards chondrocytes might be induced and/or influenced by molecules from the microenvironment. Using microarray analysis, we previously identified genes that are regulated during MSC differentiation towards chondrocytes. In this study, we wanted to precisely assess the differential expression of genes associated with the microenvironment using a large-scale real-time PCR assay, according to the simultaneous detection of up to 384 mRNAs in one sample. Chondrogenesis of bone-marrow-derived human MSCs was induced by culture in micropellet for various periods of time. Total RNA was extracted and submitted to quantitative RT-PCR. We identified molecules already known to be involved in attachment and cell migration, including syndecans, glypicans, gelsolin, decorin, fibronectin, and type II, IX and XI collagens. Importantly, we detected the expression of molecules that were not previously associated with MSCs or chondrocytes, namely metalloproteases (MMP-7 and MMP-28), molecules of the connective tissue growth factor (CTGF); cef10/cyr61 and nov (CCN) family (CCN3 and CCN4), chemokines and their receptors chemokine CXC motif ligand (CXCL1), Fms-related tyrosine kinase 3 ligand (FlT3L), chemokine CC motif receptor (CCR3 and CCR4), molecules with A Disintegrin And Metalloproteinase domain (ADAM8, ADAM9, ADAM19, ADAM23, A Disintegrin And Metalloproteinase with thrombospondin type 1 motif ADAMTS-4 and ADAMTS-5), cadherins (4 and 13) and integrins (α4, α7 and β5). Our data suggest that crosstalk between ECM components of the microenvironment and MSCs within the cartilage is responsible for the differentiation of MSCs into chondrocytes.  相似文献   

8.
ADAMTS-4 (aggrecanase1) is believed to play an important role in the degradation of aggrecan during the progression of joint diseases. ADAMTS-4 is synthesized as a latent pro-enzyme that requires the removal of the pro-domain, exposing the N-terminal neoepitope, to achieve activity. We developed a monoclonal antibody against this neoepitope of active ADAMTS-4. Furthermore, we established and characterized a competitive ELISA for measuring active ADAMTS-4 form applying the specific antibody. We used this assay to profile the presence of active ADAMTS-4 and its aggrecan degradation product (NITEGE373) in a bovine cartilage ex vivo model. We found that after stimulation with catabolic factors, the cartilage initially released high levels of aggrecanase-derived aggrecan fragments into supernatant but subsequently decreased to background levels. The level of active ADAMTS-4 released into the supernatant and retained in the cartilage matrix increased continuously throughout the 21 days of the study. The activity of ADAMTS-4 on the last day of catabolic stimulation was verified in vitro by adding deglycosylated or native aggrecan to the conditioned medium. Samples of human cartilage affected by varying degrees of osteoarthritis stained strongly for active ADAMTS-4 where surface fibrillation and clustered chondrocytes were observed. This assay could be an effective tool for studying ADAMTS-4 activity and for screening drugs regulating ADAMTS-4 activation. Moreover, it could be a potential biomarker for degenerative joint disease.  相似文献   

9.

Introduction

Increased expression of aggrecanase-1 (ADAMTS-4) has emerged as an important factor in osteoarthritis (OA) and other joint diseases. This study aimed to determine whether the expression of ADAMTS-4 in human chondrocytes is regulated by miRNA.

Methods

MiRNA targets were identified using bioinformatics. Chondrocytes were isolated from knee cartilage and treated with interleukin-1 beta (IL-1β). Gene expression was quantified using TaqMan assays and protein production was determined by immunoblotting. Luciferase reporter assay was used to verify interaction between miRNA and target messenger RNA (mRNA).

Results

In silico analysis predicted putative target sequence of miR-125b on ADAMTS-4. MiR-125b was expressed in both normal and OA chondrocytes, with significantly lower expression in OA chondrocytes than in normal chondrocytes. Furthermore, IL-1β-induced upregulation of ADAMTS-4 was suppressed by overexpression of miR-125b in human OA chondrocytes. In the luciferase reporter assay, mutation of the putative miR-125b binding site in the ADAMTS-4 3''UTR abrogated the suppressive effect of miR125.

Conclusions

Our results indicate that miR-125b plays an important role in regulating the expression of ADAMTS-4 in human chondrocytes and this identifies miR-125b as a novel therapeutic target in OA.  相似文献   

10.
11.

Aim

The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.

Materials and Methods

Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix metalloproteinase (MMP)-3, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-6 and nitric oxide (NO) and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC) or non-sclerotic (NSC) subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.

Results

In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008). MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01). TIMP-1 production was slightly increased at 3 μM (p = 0.02) and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05). IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.

Conclusions

Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in osteoblasts as similar results were obtained with anti-IL-6 antibody.  相似文献   

12.
The low‐density lipoprotein receptor‐related protein 1 (LRP1) is known as an endocytic and signal transmission receptor. We formerly reported the gene expression and the localization of LRP1 in cartilage tissue and chondrocytes, but its roles in the differentiation of chondrocytes remained to be investigated. Here, in order to address this issue, we employed RNAi strategy to knockdown lrp1 in chondrocytic cells and obtained findings indicating a critical role therein. As a result of lrp1 knockdown, aggrecan and col2a1 mRNA levels were decreased. However, that of col10a1 or mmp13 mRNA was rather increased. Under this condition, we performed a promoter assay for Axin2, which is known to be induced by activation of the WNT/β‐catenin (βcat) signaling pathway. Thereby, we found that Axin2 promoter activity was enhanced in the lrp1 knockdown cells. Furthermore, when the WNT/β–catenin pathway was activated in chondrocytic cells by WNT3a or SB216763, which inhibits the phosphorylation of GSK3β, the mRNA levels of aggrecan and col2a1 were decreased, whereas that of mmp13 was increased. Additionally, the level of phosphorylated protein kinase C (PKC) ζ was also decreased in the lrp1 knockdown cells. When the phosphorylation of PKCζ was selectively inhibited, aggrecan and col2a1 mRNA levels decreased, whereas the mmp13 mRNA level increased. These data demonstrate that LRP1 exerts remarkable effects to retain the mature phenotype of chondrocytes as a critical mediator of cell signaling. Our findings also indicate that the onset of hypertrophy during endochondral ossification appears to be particularly dependent on the WNT and PKC signaling initiated by LRP1. J. Cell. Physiol. 222:138–148, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
16.
The two aggrecanases ADAMTS-4 and ADAMTS-5 have been shown to not only play roles in the breakdown of cartilage extracellular matrix in osteoarthritis, but also mediate processing of matrilins in the secretory pathway. The matrilins are adaptor proteins with a function in connecting fibrillar and network-like components in the cartilage extracellular matrix. Cleavage resulting in processed matrilins with fewer ligand-binding subunits could make these less efficient in providing matrix cohesion. In this study, the processing and degradation of matrilin-4 during cartilage remodeling in the growth plate of the developing mouse long bones were studied in greater detail. We show that ADAMTS-5 and a matrilin-4 neoepitope, revealed upon ADAMTS cleavage, colocalize in prehypertrophic/hypertrophic chondrocytes while they are not detected in proliferating chondrocytes of the growth plate. ADAMTS-5 and the cleaved matrilin-4 are preferentially detected in vesicles derived from the Golgi apparatus. The matrilin-4 neoepitope was not observed in the growth plate of ADAMTS-5 deficient mice. We propose that in the growth plate ADAMTS-5, and not ADAMTS-4, has a physiological function in the intracellular processing of matrilins and potentially of other extracellular matrix proteins.  相似文献   

17.
The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE373 neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors.  相似文献   

18.
Auxin signaling mediated by various auxin/indole‐3‐acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin‐inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin‐dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs‐ARFs modules during LR development. We showed that auxin‐mediated induction of LRP1 is lost in emerging LRs of slr‐1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1‐induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号