首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody–drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla®). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin®), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1.  相似文献   

2.
Antibody–drug conjugates (ADCs) are antibody‐based therapeutics that have proven to be highly effective cancer treatment platforms. They are composed of monoclonal antibodies conjugated with highly potent drugs via chemical linkers. Compared to cysteine‐targeted chemistries, conjugation at native lysine residues can lead to a higher degree of structural heterogeneity, and thus it is important to evaluate the impact of conjugation on antibody conformation. Here, we present a workflow involving native ion mobility (IM)‐MS and gas‐phase unfolding for the structural characterization of lysine‐linked monoclonal antibody (mAb)–biotin conjugates. Following the determination of conjugation states via denaturing Liquid Chromatography‐Mass Spectrometry (LC–MS) measurements, we performed both size exclusion chromatography (SEC) and native IM‐MS measurements in order to compare the structures of biotinylated and unmodified IgG1 molecules. Hydrodynamic radii (Rh) and collision cross‐sectional (CCS) values were insufficient to distinguish the conformational changes in these antibody–biotin conjugates owing to their flexible structures and limited instrument resolution. In contrast, collision induced unfolding (CIU) analyses were able to detect subtle structural and stability differences in the mAb upon biotin conjugation, exhibiting a sensitivity to mAb conjugation that exceeds native MS analysis alone. Destabilization of mAb–biotin conjugates was detected by both CIU and differential scanning calorimetry (DSC) data, suggesting a previously unknown correlation between the two measurement tools. We conclude by discussing the impact of IM‐MS and CIU technologies on the future of ADC development pipelines.  相似文献   

3.
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris®) and trastuzumab emtansine (Kadcyla®), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.  相似文献   

4.
《MABS-AUSTIN》2013,5(6):1064-1076
ABSTRACT

Site-specific antibody-drug conjugates (ADCs) are designed to overcome the heterogeneity observed with first-generation ADCs that use random conjugation to surface-exposed lysine residues or conjugation to interchain disulfide bonds. Despite significantly enhanced homogeneity, however, the production of site-specific ADCs yields some process-related species heterogeneity, including stereoisomers, unconjugated antibody, underconjugated species, and overconjugated species. An elevated level of size variants, such as heavy chain-light chain species (half ADC), heavy chain-heavy chain-light chain species, and light chain species, is also observed with the final site-specific ADC product. To understand the root cause of heterogeneity generated during the ADC conjugation process, we designed time-course studies for each conjugation step, including reduction, oxidation, conjugation, and quenching. We developed both non-reduced peptide map and LabChip-based capillary electrophoresis sodium dodecyl sulfate methods for time-course sample analysis. On the basis of our time-course data, the half ADC and unconjugated antibody were generated during oxidation as a result of alternative disulfide bond arrangements. During oxidation, two hinge cysteines formed an intra-chain disulfide bond in the half ADC, and three inter-chain hinge disulfide bonds were formed in the unconjugated antibody. Time-course data also showed that the elevated level of size variants, especially heavy chain-heavy chain-light chain species and light chain species, resulted from the quenching step, where the quenching reagent engaged in a disulfide bond exchange reaction with the ADC and broke the disulfide bonds connecting the heavy chain and light chain. Underconjugated and overconjugated species arose from the equilibrium established during the conjugation reaction.  相似文献   

5.
Antibody-drug conjugation strategies are continuously evolving as researchers work to improve the safety and efficacy of the molecules. However, as a part of process and product development, confirmation of the resulting innovative structures requires new, specialized mass spectrometry (MS) approaches and methods, as compared to those already established for antibody-drug conjugates (ADCs) and the heightened characterization practices used for monoclonal antibodies (mAbs), in order to accurately elucidate the resulting conjugate forms, which can sometimes have labile chemical bonds and more extreme chemical properties like hydrophobic patches. Here, we discuss practical approaches for characterization of ADCs using new methodologies and ultrahigh-resolution MS, and provide specific examples of these approaches. Denaturing conditions of typical liquid chromatography (LC)/MS analyses impede the successful detection of intact, 4-chain ADCs generated via cysteine site-directed chemistry approaches where hinge region disulfide bonds are partially reduced. However, this class of ADCs is detected intact reliably under non-denaturing size-exclusion chromatography/MS conditions, also referred to as native MS. For ADCs with acid labile linkers such as one used for conjugation of calicheamicin, careful selection of mobile phase composition is critical to the retention of intact linker-payload during LC/MS analysis. Increasing the pH of the mobile phase prevented cleavage of a labile bond in the linker moiety, and resulted in retention of the intact linker-payload. In-source fragmentation also was observed with typical electrospray ionization (ESI) source parameters during intact ADC mass analysis for a particular surface-accessible linker-payload moiety conjugated to the heavy chain C-terminal tag, LLQGA (via transglutaminase chemistry). Optimization of additional ESI source parameters such as cone voltages, gas pressures and ion transfer parameters led to minimal fragmentation and optimal sensitivity. Ultrahigh-resolution (UHR) MS, combined with reversed phase-ultrahigh performance (RP-UHP)LC and use of the FabRICATOR® enzyme, provides a highly resolving, antibody subunit-domain mapping method that allows rapid confirmation of integrity and the extent of conjugation. For some ADCs, the hydrophobic nature of the linker-payload hinders chromatographic separation of the modified subunit/domains or causes very late elution/poor recovery. As an alternative to the traditionally used C4 UHPLC column chemistry, a diphenyl column resulted in the complete recovery of modified subunit/domains. For ADCs based on maleimide chemistry, control of pH during proteolytic digestion is critical to minimize ring-opening. The optimum pH to balance digestion efficiency and one that does not cause ring opening needed to be established for successful peptide mapping.  相似文献   

6.
《MABS-AUSTIN》2013,5(1):46-53
Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however, the importance of conjugate homogeneity has been realized. The current methods for drug attachment lead to a heterogeneous mixture, and some populations of that mixture have poor in vivo performance. New methods for site-specific drug attachment lead to more homogeneous conjugates and allow control of the site of drug attachment. These subtle improvements can have profound effects on in vivo efficacy and therapeutic index. This review examines current methods for site-specific drug conjugation to antibodies, and compares in vivo results with their non-specifically conjugated counterparts. The apparent improvement in pharmacokinetics and the reduced off target toxicity warrant further development of this site-specific modification approach for future ADC development.  相似文献   

7.
Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however, the importance of conjugate homogeneity has been realized. The current methods for drug attachment lead to a heterogeneous mixture, and some populations of that mixture have poor in vivo performance. New methods for site-specific drug attachment lead to more homogeneous conjugates and allow control of the site of drug attachment. These subtle improvements can have profound effects on in vivo efficacy and therapeutic index. This review examines current methods for site-specific drug conjugation to antibodies, and compares in vivo results with their non-specifically conjugated counterparts. The apparent improvement in pharmacokinetics and the reduced off target toxicity warrant further development of this site-specific modification approach for future ADC development.  相似文献   

8.
Antibody–drug conjugates (ADCs) are designed to facilitate the targeted delivery of cytotoxic drugs to improve their tumor fighting effects and minimize systemic toxicity. However, efficacy and safety can potentially be compromised due to the release of conjugated drugs from the ADC with time while in circulation, resulting in changes in the drug-to-antibody ratio (DAR). Current understanding of this process is limited because existing methods such as immunoassays fail to distinguish ADCs with different DARs. Here we demonstrate a novel method with bead-based affinity capture and capillary liquid chromatography–mass spectrometry to allow direct measurement of drug release by quantifying DAR distributions of the ADC in plasma/serum. This method successfully identified individual intact conjugated antibody species produced due to drug loss from ADCs (e.g., an engineered site-specific anti-MUC16 THIOMAB–drug conjugate) and measured the corresponding DAR distributions in vitro and in vivo. Information obtained can provide insights into the mechanisms involved in drug loss and help to optimize ADC therapeutics. Other potential applications of the method may include characterization of posttranslational modifications, protein adducts, and immunogenicity.  相似文献   

9.
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.  相似文献   

10.
抗体偶联药物(antibody-drug conjugates,ADC)因其良好的靶向性及抗癌活性目前已成为抗肿瘤抗体药物研发的新热点和重要趋势,受到越来越多的关注。ADC药物由单克隆抗体、高效应的细胞毒性物质以及连接臂三部分组成,它将抗体的靶向性与细胞毒性药物的抗肿瘤作用相结合,可以降低细胞毒性抗肿瘤药物的不良反应,提高肿瘤治疗的选择性,还能更好地应对靶向单抗的耐药性问题。与传统单抗药物相比,因其结构复杂,ADC药物质量属性分析方法的建立具有更大的难度和特殊性。对抗体偶联药物的研发现状、质量属性分析方法和挑战以及质量控制要点进行了简要介绍,为ADC药物的研究和质量控制提供参考。  相似文献   

11.
The biopharmaceutical industry has become increasingly focused on developing biosimilars as less expensive therapeutic products. As a consequence, the regulatory approval of 2 antibody-drug conjugates (ADCs), Kadcyla® and Adcetris® has led to the development of biosimilar versions by companies located worldwide. Because of the increased complexity of ADC samples that results from the heterogeneity of conjugation, it is imperative that close attention be paid to the critical quality attributes (CQAs) that stem from the conjugation process during ADC biosimilar development process. A combination of physicochemical, immunological, and biological methods are warranted in order to demonstrate the identity, purity, concentration, and activity (potency or strength) of ADC samples. As described here, we performed extensive characterization of a lysine conjugated ADC, ado-trastuzumab emtansine, and compared its CQAs between the reference product (Kadcyla®) and a candidate biosimilar. Primary amino acid sequences, drug-to-antibody ratios (DARs), conjugation sites and site occupancy data were acquired and compared by LC/MS methods. Furthermore, thermal stability, free drug content, and impurities were analyzed to further determine the comparability of the 2 ADCs. Finally, biological activities were compared between Kadcyla® and biosimilar ADCs using a cytotoxic activity assay and a HER2 binding assay. The in-depth characterization helps to establish product CQAs, and is vital for ADC biosimilars development to ensure their comparability with the reference product, as well as product safety.  相似文献   

12.
Antibody-drug conjugates (ADCs) are promising biotherapeutic agents for the treatment of cancer. The careful monitoring of critical quality attributes is important for ADCs' development, manufacturing and production. In this work, the effect of the presence of a trisulfide bond in the monoclonal antibody (mAb) conjugated to DM4 cytotoxic payload through a disulfide-bond linker sulfo-SPDB (sSPDB) was investigated. Three lots of antibody containing variable levels of trisulfide bonds were used. The identity and levels of trisulfide bonds were determined by liquid chromatography/ mass spectrometry (MS)/MS analysis. The antibodies were conjugated to sSPDB-DM4 to generate ADCs. Further analysis indicated that the drug-to-antibody ratio (DAR) value, a critical quality attribute, slightly increased for the conjugates made from antibody containing higher levels of trisulfide bond. Also, higher fragmentation levels were observed in the conjugates with more trisulfide bond. Detailed characterization by MS revealed that a small amount of DM4 payload was directly attached to inter-chain cysteine residues by disulfide or trisulfide bonds. Overall, our investigation indicated that the trisulfide bond present in the mAb could react with DM4 during the conjugation process. Therefore, the presence of trisulfide bonds in the antibody moiety should be carefully monitored and well controlled during the development of a maytansinoid ADC.  相似文献   

13.
《MABS-AUSTIN》2013,5(6):1113-1121
ABSTRACT

Charge variants are important attributes of monoclonal antibodies, including antibody-drug conjugates (ADCs), because charge variants can potentially influence the stability and biological activity of these molecules. Ion exchange chromatography (IEX) is widely used for charge variants analysis of mAbs and offers the feasibility of fractionation for in-depth characterization. However, the conjugated linker-drug on ADCs could potentially affect the separation performance of IEX, considering IEX separation relies on surface charge distribution of analyte and involves the interaction between analyte surface and IEX stationary phase. Here, we investigated weak cation exchange chromatography (WCX) for its application in analyzing three ADCs (two broad distribution ADCs and an ADC with controlled conjugation sites) and the 2-drug/4-drug loaded species isolated from the two broad distribution ADCs using hydrophobic interaction chromatography. The major peaks in WCX profile were characterized via fraction collection followed by capillary electrophoresis-sodium dodecyl sulfate or peptide mapping. Results suggested that both the number of drug loads and conjugation sites could impact WCX separation of an ADC. The hypothesis was that the linker drugs could interfere with the ionic interaction between its surrounding amino acids on the mAb surface and column resin, which reduced the retention of ADCs on WCX column in this study. Our results further revealed that WCX brings good selectivity towards positional isomers, but limited resolution for different drug load, which causes the peak compositions of the two broad-distribution ADCs to be highly complex. We also compared results from WCX and imaged capillary isoelectric focusing (icIEF). Results showed that separation in icIEF was less influenced by conjugated linker drugs for the ADCs studied in this work, and better alignment was found between the two techniques for the ADC with controlled conjugate sites. Overall, this work provides insights into the complexity of WCX analysis of ADCs, which should be considered during method development and sample characterization.  相似文献   

14.
Antibody-drug conjugates (ADCs), produced through the chemical linkage of a potent small molecule cytotoxin (drug) to a monoclonal antibody, have more complex and heterogeneous structures than the corresponding antibodies. This review describes the analytical methods that have been used in their physicochemical characterization. The selection of the most appropriate methods for a specific ADC is heavily dependent on the properties of the linker, the drug and the choice of attachment sites (lysines, inter-chain cysteines, Fc glycans). Improvements in analytical techniques such as protein mass spectrometry and capillary electrophoresis have significantly increased the quality of information that can be obtained for use in product and process characterization and for routine lot release and stability testing.Key words: antibody drug conjugates, physicochemical characterization, analytical methods, auristatins, maytansines, biophysical characterization, drug distribution, drug loading, drug to antibody ratio  相似文献   

15.
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.  相似文献   

16.
Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.  相似文献   

17.
Codelivery of multiple therapeutic agents with different anticancer mechanisms can overcome drug resistance as well as generate additive or synergistic anticancer effects that may enhance the antitumor efficacy. Antibody-drug conjugates (ADCs) can be used for highly specific delivery of multiple therapeutic agents with different anticancer mechanisms, though more research is required towards designing flexible platforms on which dual drug ADCs could be prepared. Herein, we describe the synthesis of a heterotrifunctional linker that could be used to construct flexible platforms for preparing dual-cytotoxic drug conjugates in a site-specific manner. As a proof of concept, we synthesized dual drug ADCs carrying monomethyl auristain E (MMAE, tubulin polymerization inhibitor) and pyrrolobenzodiazepine dimer (PBD, DNA minor groove alkylator). We then evaluated the dual drug ADCs for in vitro efficacy and confirmed the dual mechanism of action.  相似文献   

18.
抗体偶联药物(antibody drug conjugate,ADC)通常由抗体通过链接体与毒素小分子偶联而成,同时具备抗体的高靶向性和小分子药物的高活性,使之作为一种新兴的靶向治疗手段,在肿瘤治疗领域展现出了优秀的疗效和潜力,成为药物研发领域的新热点。目前全球已有14款ADC药物获批上市,处于临床研究阶段的ADC候选药物分子超过140个。为了进一步提高ADC药物的安全性和有效性,近年来涌现出了各种新颖的技术。本文对ADC药物分子的关键元素,包括抗体、链接体、毒素小分子以及偶联技术等方面的最新研究进展进行总结,并讨论其优缺点。期望这些讨论能够帮助增加对ADC药物研究和开发更加系统的理解,为研发出更加高效和安全的ADC药物带来一些思考。  相似文献   

19.
Cysteine-conjugated antibody-drug conjugates (ADCs) are manufactured using controlled partial reduction and conjugation chemistry with drug payloads that typically occur in intervals of 0, 2, 4, 6, and 8. Control of heterogeneity is of particular importance to the quality of ADC product because drug loading and distribution can affect the safety and efficacy of the ADC. Liquid chromatography ultra-violet (LC-UV)-based methods can be used to acquire the drug distribution profiles of cysteine-conjugated ADCs when analyzed using hydrophobic interaction chromatography (HIC). However, alternative analysis techniques are often required for structural identification when conjugated drugs do not possess discrete ultra-violet absorbance properties for precise assessment of the drug-to-antibody ratio (DAR). In this study, multidimensional chromatography was used as an efficient method for combining non-compatible techniques, such as HIC, with analysis by mass spectrometry (LC/LC/QTOF-MS) for rapid on-line structural elucidation of species observed in HIC distribution profiles of cysteine-conjugated ADCs. The methodology was tested using an IgG1 mAb modified by cysteine conjugation with a non-toxic drug mimic. Structural elucidation of peaks observed in the HIC analysis (1st dimension) were successfully identified based on their unique sub-unit masses via mass spectrometry techniques once dissociation occurred under denaturing reversed phase conditions (2nd dimension). Upon identification, the DAR values were determined to be 2.83, 4.44, and 5.97 for 3 drug load levels (low-, medium-, and high-loaded ADC batches), respectively, based on relative abundance from the LC-UV data. This work demonstrates that multidimensional chromatography coupled with MS, provides an efficient approach for on-line biotherapeutic characterization to ensure ADC product quality.  相似文献   

20.
《MABS-AUSTIN》2013,5(6):1036-1044
Cysteine-conjugated antibody-drug conjugates (ADCs) are manufactured using controlled partial reduction and conjugation chemistry with drug payloads that typically occur in intervals of 0, 2, 4, 6, and 8. Control of heterogeneity is of particular importance to the quality of ADC product because drug loading and distribution can affect the safety and efficacy of the ADC. Liquid chromatography ultra-violet (LC-UV)-based methods can be used to acquire the drug distribution profiles of cysteine-conjugated ADCs when analyzed using hydrophobic interaction chromatography (HIC). However, alternative analysis techniques are often required for structural identification when conjugated drugs do not possess discrete ultra-violet absorbance properties for precise assessment of the drug-to-antibody ratio (DAR). In this study, multidimensional chromatography was used as an efficient method for combining non-compatible techniques, such as HIC, with analysis by mass spectrometry (LC/LC/QTOF-MS) for rapid on-line structural elucidation of species observed in HIC distribution profiles of cysteine-conjugated ADCs. The methodology was tested using an IgG1 mAb modified by cysteine conjugation with a non-toxic drug mimic. Structural elucidation of peaks observed in the HIC analysis (1st dimension) were successfully identified based on their unique sub-unit masses via mass spectrometry techniques once dissociation occurred under denaturing reversed phase conditions (2nd dimension). Upon identification, the DAR values were determined to be 2.83, 4.44, and 5.97 for 3 drug load levels (low-, medium-, and high-loaded ADC batches), respectively, based on relative abundance from the LC-UV data. This work demonstrates that multidimensional chromatography coupled with MS, provides an efficient approach for on-line biotherapeutic characterization to ensure ADC product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号