首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
目的:观察前列腺癌组织及不同前列腺癌细胞系中miR-182的表达,并探讨下调其表达对前列腺癌细胞增殖和凋亡的影响及机制。方法:采用实时荧光定量PCR(q RT-PCR)检测30例前列腺癌组织和30例相应的癌旁组织以及前列腺正常上皮RWPE-1细胞、前列腺癌PC-3、LNCa P和DU145细胞中miR-182的表达,进一步采用Lipfectamine 2000脂质体转染miRNA-182 inhibitor和阴性对照miRNA于PC-3细胞后,通过噻唑蓝(MTT)比色法检测细胞增殖情况,流式细胞术检测细胞凋亡率,免疫印迹(Western blot)法检测转录因子FOXO1、血管内皮生长因子(VEGF)和抑癌基因p53蛋白的表达。结果:miR-182在前列腺癌组织中的表达明显高于癌旁组织(P0.05);miR-182在前列腺癌细胞系PC-3、LNCa P和DU145中的表达均高于前列腺正常上皮细胞RWPE-1(P0.05),其中PC-3细胞中miR-182表达水平最高。转染miRNA-182 inhibitor至PC-3细胞成功下调miR-182表达后,细胞的增殖能力明显受到抑制,细胞凋亡能力明显增强,FOXO1表达水平显著升高,VEGF和p53的表达明显降低,差异均具有统计学意义(P0.05)。结论:miR-182在前列腺癌组织及细胞中呈高表达,下调miR-182的表达可能通过增加FOXO1的表达并减少VEGF和p53的表达,抑制前列腺癌细胞增殖并诱导细胞凋亡。  相似文献   

5.
6.
7.
Li Z  Li W  Xie J  Wang Y  Tang A  Li X  Ye J  Gui Y  Cai Z 《Cell biology international》2011,35(7):671-676
PCDH10 (protocadherin-10), a novel tumour suppressor gene, is down-regulated in several human cancers due to hypermethylation of promoter CGIs (CpG islands). Here, we investigated the expression of PCDH10 in different normal adult tissues and in a panel of prostate cancer cell lines. PCDH10 was widely expressed in normal tissues with higher levels in the prostate. The expression of PCDH10 was markedly reduced or silenced in prostate cancer cell lines compared with normal adult prostate tissue. Decreased PCDH10 expression was correlated with the methylation status of the PCDH10 promoter. Furthermore, the DNA demethylating agent 5'-azacytidin restored PCDH10 expression by suppressing PCDH10 promoter methylation in prostate cancer cell lines. Treatment with Trichostatin A alone had no significant effect on the expression of PCDH10 but enhanced the effect of 5'-azacytidin. In conclusion, we found that the decreased PCDH10 expression in prostate cancer cells was associated with the aberrant methylation of PCDH10 promoter CGI. Our results may contribute to the understanding of the role of PCDH10 inactivation in the progression of prostate cancers.  相似文献   

8.
Genetic alterations and/or deletion of the tumor suppressor gene PTEN/MMAC/TEP1 occur in many types of human cancer including prostate cancer. We describe the production of monoclonal antibody against recombinant human PTEN and the study of PTEN gene and protein expression in three commercially available human prostate cancer cell lines, PC-3, LNCaP, and DU 145. Northern blotting analyses showed that LNCaP and DU145 but not PC-3 cells expressed PTEN mRNA. However, Western blotting analyses using a monoclonal antibody against PTEN demonstrated the expression of PTEN protein in DU145 but not LNCaP cells. In DU145 cells, PTEN expression at both the mRNA and protein levels inversely correlated with serum concentrations and levels of PKB/Akt phosphorylation. In addition, the basal activity of PKB/Akt as indicated by level of phosphorylation was higher in prostate cancer cells which do not express PTEN than that in the cells expressing wild type PTEN. Thus, PTEN may play a critical role in regulating cellular signaling in prostate cancer cells.  相似文献   

9.
10.
11.
12.
We previously demonstrated that matrine could inhibit the proliferating, migrating, as well as invading processes of both PC-3 and DU145 cells. However, the underlying molecular mechanisms have not yet been clearly defined. In this study, using various techniques such as high throughput sequencing technology, bioinformatics, quantitative real-time PCR, and immunoblot analysis, we aimed to understand whether matrine serves as a novel regulator of FOXO and PI3K-AKT signaling pathway. DU145 and PC-3 cell lines were cultured for 24 h in vitro. Cells were treated with either matrine or control serum for 48 h, followed by extraction of total RNA. The RNA was sequenced using HiSeq 2500 high-throughput sequencing platform (Illumina). A gene library was established and quality analysis of read data carried out. Integrated database from the website DAVID was used to analyze Gene Ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway of differential genes was used for pathway analysis, screening for fold differences of more than two times. The FOXO and PI3K-AKT signaling pathways were screened, and expression levels of mRNA and core protein detected by real-time PCR and immunoblotting, respectively. High throughput sequencing and GO analysis revealed that differentially expressed genes before and after treatment played an important role in cell metabolic process, growth process, anatomical structure formation, cellular component organization, and biological regulation. KEGG signal pathway analysis revealed that FOXO and PI3K-AKT signal pathways had a significant difference between before and after matrine-treated androgen-independent prostate cancer cells PC-3 and DU145. Real-time PCR showed that matrine treatment led to a significant increase in the expression levels of FOXO1A, FOXO3A, FOXO4, and FOXO6 in DU145 and PC-3 cells (P<0.01 or P<0.05), whereas the PI3K expression levels decreased (P<0.01). Similarly, immunoblotting revealed a significant increase (P<0.05) in the expression levels of FOXO1A FOXO3A, FOXO4, and FOXO6 in both PC-3 and DU145 cells, whereas PI3K expression levels decreased (P<0.05). Matrine had a broad regulating effect on the mRNA expression profiles of both PC-3 and DU145 cells. Matrine may inhibit cell proliferation, migration, as well as invasion, and induce apoptosis in both PC-3 and DU145 cells through FOXO and PI3K-AKT signaling pathways. Matrine could therefore be used as a complementary drug to present chemotherapeutic agents, for treating androgen-independent prostate cancer.  相似文献   

13.
14.
15.
16.
Paeonol (Pae) is the main active ingredient from the root bark of Paeonia moutan and the grass of Radix Cynanchi Paniculati. Numerous reports indicate that Pae effectively inhibits several types of cancer lines. In this study, we report that Pae hinders prostate cancer growth both in vivo and in vitro. Human prostate cancer lines DU145 and PC-3 were cultured in the presence of Pae. The xenograft tumor in mice was established by subcutaneous injection of DU145 cells. Cell growth was measured by MTT, and the apoptosis was detected by the flow cytometry. Expression of Bcl-2, Bax, Akt, and mTOR were tested by western blotting assay. DU145 and PC-3 showed remarkable sensitivity to Pae, and exposure to Pae induced dose-and time-dependent growth inhibitory responses. Moreover, treatment of Pae promoted apoptosis and enhanced activities of caspase-3, caspase-8, and caspase-9 in DU145. Further work demonstrated Pae reduced expression of Bcl-2 and increased expression of Bax in DU145. Interestingly, we observed that Pae significantly decreased phosphorylated status of Akt and mTOR, and inhibitory effects of Pae and PI3K/Akt inhibitor on DU145 proliferation were synergistic. Finally, we confirmed that oral administration of Pae to the DU145 tumor-bearing mice significantly lowered tumor cell proliferation and led to tumor regression. Pae possesses inhibitory effects on prostate cancer cell growth both in vitro and in vivo, and the anti-proliferative effect may be closely related to its activation of extrinsic and intrinsic apoptotic pathway and inhibition of the PI3K/Akt pathway.  相似文献   

17.
18.
Galectins, soluble intracellular and extracellular β-galactoside-binding proteins, are known to be involved in the progression and metastasis of various cancers, including prostate adenocarcinoma, but the detailed mechanism of their biological roles remains elusive. In the prostate cancer cell lines PC-3 and DU-145, galectin 3 (gal3) is present at normal levels, whereas in LNCaP, its expression is silenced. In LNCaP, the gal3 promoter was heavily methylated, whereas PC-3 or DU-145 cells showed negligible or no methylation in the gal3 promoter indicating a negative correlation between gal3 promoter methylation and its expression. On immunohistochemical analysis of normal and tumor prostate tissues, gal3 was found expressed both in nucleus and cytoplasm of benign prostatic hyperplasia, high-grade prostatic intraepithelial neoplasia, and stage I. The expression of the gal3 was found drastically downregulated in advanced stages and, interestingly, mostly in the cytoplasm. On methylation analysis, the gal3 promoter in stage II prostate adenocarcinoma (PCa) was found heavily methylated, whereas in stages III and IV, it was only lightly methylated. However, in stage I PCa, both heavy and light methylations were observed in the gal3 promoter. In normal and benign prostatic hyperplasia tissues, the gal3 promoter was almost unmethylated. The differential cytosine methylation in the gal3 promoter in stages I to IV PCa enabled us to develop and validate a methylation-specific polymerase chain reaction-based sensitive assay specific for stages I and II PCa. These stages are considered the critical stages for successful intervention, thus underscoring the significance of this diagnostic assay.  相似文献   

19.
《Epigenetics》2013,8(10):1248-1256
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG’s predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.  相似文献   

20.
Expression of glutathione peroxidase 3 (GPx3) is down-regulated in a variety of human malignancies. Both methylation and deletion of GPx3 gene underlie the alterations of GPx3 expression in prostate cancer. A strong correlation between the down-regulation of GPx3 expression and progression of prostate cancer and the suppression of prostate cancer xenografts in SCID mice by forced expression of GPx3 suggests a tumor suppression role of GPx3 in prostate cancer. However, the mechanism of GPx3-mediated tumor suppression remains unclear. In this report, GPx3 was found to interact directly with p53-induced gene 3 (PIG3). Forced overexpression of GPx3 in prostate cancer cell lines DU145 and PC3 as well as immortalized prostate epithelial cells RWPE-1 increased apoptotic cell death. Expression of GPx3(x73c), a peroxidase-negative OPAL codon mutant, in DU145 and PC3 cells also increased cell death. The induced expression of GPx3 in DU145 and PC3 cells resulted in an increase in reactive oxygen species and caspase-3 activity. These activities were abrogated by either knocking down PIG3 or mutating the PIG3 binding motif in GPx3 or binding interference from a peptide corresponding to PIG3 binding motif in GPx3. In addition, UV-treated RWPE-1 cells underwent apoptotic death, which was partially prevented by knocking down GPx3 or PIG3, suggesting that GPx3-PIG3 signaling is critical for UV-induced apoptosis. Taken together, these results reveal a novel signaling pathway of GPx3-PIG3 in the regulation of cell death in prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号