共查询到20条相似文献,搜索用时 0 毫秒
1.
PCDH10 (protocadherin-10), a novel tumour suppressor gene, is down-regulated in several human cancers due to hypermethylation of promoter CGIs (CpG islands). Here, we investigated the expression of PCDH10 in different normal adult tissues and in a panel of prostate cancer cell lines. PCDH10 was widely expressed in normal tissues with higher levels in the prostate. The expression of PCDH10 was markedly reduced or silenced in prostate cancer cell lines compared with normal adult prostate tissue. Decreased PCDH10 expression was correlated with the methylation status of the PCDH10 promoter. Furthermore, the DNA demethylating agent 5'-azacytidin restored PCDH10 expression by suppressing PCDH10 promoter methylation in prostate cancer cell lines. Treatment with Trichostatin A alone had no significant effect on the expression of PCDH10 but enhanced the effect of 5'-azacytidin. In conclusion, we found that the decreased PCDH10 expression in prostate cancer cells was associated with the aberrant methylation of PCDH10 promoter CGI. Our results may contribute to the understanding of the role of PCDH10 inactivation in the progression of prostate cancers. 相似文献
2.
3.
《Epigenetics》2013,8(3):237-245
Estrogen signaling is mediated by ERα and ERβ in hormone dependent, breast cancer (BC). Over the last decade the implication of epigenetic pathways in BC tumorigenesis has emerged: cancer-related epigenetic modifications are implicated in both gene expression regulation, and chromosomal instability. In this review, the epigenetic-mediated estrogen signaling, controlling both ER level and ER-targeted gene expression in BC, are discussed: (1) ER silencing is frequently observed in BC and is often associated with epigenetic regulations while chemical epigenetic modulators restore ER expression and increase response to treatment;(2) ER-targeted gene expression is tightly regulated by co-recruitment of ER and both coactivators/corepressors including HATs, HDACs, HMTs, Dnmts and Polycomb proteins. 相似文献
4.
Natalia A. Prado Janine L. Brown Joseph A. Zoller Amin Haghani Mingjia Yao Lora R. Bagryanova Michael G. Campana Jesús E. Maldonado Ken Raj Dennis Schmitt Todd R. Robeck Steve Horvath 《Aging cell》2021,20(7)
Age‐associated DNA‐methylation profiles have been used successfully to develop highly accurate biomarkers of age ("epigenetic clocks") in humans, mice, dogs, and other species. Here we present epigenetic clocks for African and Asian elephants. These clocks were developed using novel DNA methylation profiles of 140 elephant blood samples of known age, at loci that are highly conserved between mammalian species, using a custom Infinium array (HorvathMammalMethylChip40). We present epigenetic clocks for Asian elephants (Elephas maximus), African elephants (Loxodonta africana), and both elephant species combined. Two additional human‐elephant clocks were constructed by combining human and elephant samples. Epigenome‐wide association studies identified elephant age‐related CpGs and their proximal genes. The products of these genes play important roles in cellular differentiation, organismal development, metabolism, and circadian rhythms. Intracellular events observed to change with age included the methylation of bivalent chromatin domains, and targets of polycomb repressive complexes. These readily available epigenetic clocks can be used for elephant conservation efforts where accurate estimates of age are needed to predict demographic trends. 相似文献
5.
6.
《Epigenetics》2013,8(11):1279-1289
7.
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF1R) expression. DNA methylation of CpG islands is an epigenetic mechanism associated with gene silencing. Recent studies have demonstrated that methylation occurs early in prostate carcinogenesis and, furthermore, may contribute to androgen independence. The methylation status of the AR and IGF1R genes was evaluated in a series of prostate cancer cell lines corresponding to early (benign) and advanced (metastatic) stages of the disease. Results of 5-Aza-2′-deoxycytidine (5-Aza) experiments, methylation-specific PCR, and sodium bisulfite-direct DNA sequencing revealed that the AR promoter is hypermethylated in metastatic M12, but not in benign P69, cells. On the other hand, no methylation was seen in the IGF1R promoter at any stage of the disease. We show, however, that 5-Aza treatment, which caused demethylation of the AR promoter, led to a significant increase in IGF1R mRNA levels, whereas addition of the AR inhibitor flutamide decreased the IGF1R mRNA levels to basal values measured prior to the 5-Aza treatment. Given that the IGF1R gene has been identified as a downstream target for AR action, our data is consistent with a model in which the AR gene undergoes methylation during progression of the disease, leading to dysregulation of AR targets, including the IGF1R gene, at advanced metastatic stages. 相似文献
8.
Amancio Carnero Matilde E. LLeonart 《Biological reviews of the Cambridge Philosophical Society》2011,86(2):443-455
Cancer is controlled not only by genetic events but also by epigenetic events. The active acquisition of epigenetic changes is a poorly understood but very important process in mammalian development, differentiation, and disease. It is well established that epigenetic events are controlled by a specific subgroup of proteins, such as DNA methyltransferases, histone acetylases histone lysine methyltransferases or histone deacetylases, that influence methylation or acetylation patterns to modulate gene expression. We and others have identified S‐adenosylhomocysteine hydrolase in a high‐throughput genetic screen focused on discovering novel genes whose inhibition induces immortalisation of primary cells. Herein, we address the importance of genes involved in epigenetic mechanisms during senescence and how their effects might determine senescence bypass and immortalisation. The ways in which genes that regulate epigenetic mechanisms might modulate senescence/immortalisation and how these pathways could influence cancer development are explored. Overall, epigenetic modifications seem to play a major role in cancer, influencing tumour outcome by interfering with key senescence pathways. 相似文献
9.
Bahman Yousefi Maryam Mohammadlou Maryam Abdollahi Amir Salek Farrokhi Mohsen Karbalaei Masoud Keikha Parviz Kokhaei Saeid Valizadeh Alireza Rezaiemanesh Vahid Arabkari Majid Eslami 《Journal of cellular physiology》2019,234(12):21770-21784
Epigenetic disorder mechanisms are one of the causes of cancer. The most important of these changes is the DNA methylation, which leads to the spread of Helicobacter pylori and inflammatory processes followed by induction of DNA methylation disorder. Mutations and epigenetic changes are the two main agents of neoplasia. Epithelial cells infection by H. pylori associated with activating several intracellular pathways including: MAPK, NF-κB, Wnt/β-catenin, and PI3K are affects a variety of cells and caused to an increase in the production of inflammatory cytokines, changes in apoptosis, proliferation, differentiation, and ultimately leads to the transformation of epithelial cells into oncogenic. The arose of free radicals impose the DNA cytosine methylation, and NO can increase the activity of DNA methyltransferase. H. pylori infection causes an environment that mediates inflammation and signaling pathways that probably caused to stomach tumorigenicity. The main processes that change by decreasing or increasing the expression of various microRNAs expressions include immune responses, apoptosis, cell cycle, and autophagy. In this review will be describe a probably H. pylori roles in infection and mechanisms that have contribution in epigenetic changes in the promoter of genes. 相似文献
10.
表观遗传学与人类疾病的研究进展 总被引:22,自引:0,他引:22
在过去的几年里,人们对表观遗传疾病的机理有了新的认识,这些疾病与染色质重塑、基因组印记、X染色体失活以及非编码RNA调控这4个表观遗传过程相关。这4个过程通过调节染色质结构,在染色体或基因簇水平上对基因表达进行调控;异常调控导致复杂的突变且表现为出生前后生长发育和神经功能的异常。对这些疾病的探讨为表观遗传机制的研究提供了很好的模型,进而有助于生物医学的研究。文章就表观遗传学和表观遗传疾病机制的研究进展做一综述。 相似文献
11.
Ze Zhang Samuel R. Reynolds Hannah G. Stolrow Ji-Qing Chen Brock C. Christensen Lucas A. Salas 《Aging cell》2024,23(3):e14071
Aging is a significant risk factor for various human disorders, and DNA methylation clocks have emerged as powerful tools for estimating biological age and predicting health-related outcomes. Methylation data from blood DNA has been a focus of more recently developed DNA methylation clocks. However, the impact of immune cell composition on epigenetic age acceleration (EAA) remains unclear as only some clocks incorporate partial cell type composition information when analyzing EAA. We investigated associations of 12 immune cell types measured by cell-type deconvolution with EAA predicted by six widely-used DNA methylation clocks in data from >10,000 blood samples. We observed significant associations of immune cell composition with EAA for all six clocks tested. Across the clocks, nine or more of the 12 cell types tested exhibited significant associations with EAA. Higher memory lymphocyte subtype proportions were associated with increased EAA, and naïve lymphocyte subtypes were associated with decreased EAA. To demonstrate the potential confounding of EAA by immune cell composition, we applied EAA in rheumatoid arthritis. Our research maps immune cell type contributions to EAA in human blood and offers opportunities to adjust for immune cell composition in EAA studies to a significantly more granular level. Understanding associations of EAA with immune profiles has implications for the interpretation of epigenetic age and its relevance in aging and disease research. Our detailed map of immune cell type contributions serves as a resource for studies utilizing epigenetic clocks across diverse research fields, including aging-related diseases, precision medicine, and therapeutic interventions. 相似文献
12.
13.
14.
15.
人恶性黑色素瘤(malignant melanoma)是近年来高发病率和高死亡率的肿瘤之一.目前尚缺乏有效的治疗方法.而表观遗传如DNA甲基化(DNA methylation)、组蛋白修饰(histonemodification)、染色质重塑(chromatin remodeling)及RNA干扰(RNA interference,RNAi)等改变在人黑色素瘤的发生、发展和转移中有重要作用.阐明黑色素瘤发生发展的表观遗传学机制已引起了学者的普遍关注.本文综述了人类黑色素瘤发生发展中所特异的表观遗传改变:CpG岛的异常甲基化修饰、组蛋白甲基化和乙酰化修饰、染色质重塑以及microRNA在黑色素瘤发生和转移中的作用,并对应用表观遗传修饰治疗人类黑色素瘤进行了探讨. 相似文献
16.
Arne Sraas Mieko Matsuyama Marcos de Lima David Wald Jochen Buechner Tobias Gedde‐Dahl Camilla Lund Sraas Brian Chen Luigi Ferrucci John Arne Dahl Steve Horvath Shigemi Matsuyama 《Aging cell》2019,18(2)
The age of tissues and cells can be accurately estimated by DNA methylation analysis. The multitissue DNA methylation (DNAm) age predictor combines the DNAm levels of 353 CpG dinucleotides to arrive at an age estimate referred to as DNAm age. Recent studies based on short‐term observations showed that the DNAm age of reconstituted blood following allogeneic hematopoietic stem cell transplantation (HSCT) reflects the age of the donor. However, it is not known whether the DNAm age of donor blood remains independent of the recipient's age over the long term. Importantly, long‐term studies including child recipients have the potential to clearly reveal whether DNAm age is cell‐intrinsic or whether it is modulated by extracellular cues in vivo. Here, we address this question by analyzing blood methylation data from HSCT donor and recipient pairs who greatly differed in chronological age (age differences between 1 and 49 years). We found that the DNAm age of the reconstituted blood was not influenced by the recipient's age, even 17 years after HSCT, in individuals without relapse of their hematologic disorder. However, the DNAm age of recipients with relapse of leukemia was unstable. These data are consistent with our previous findings concerning the abnormal DNAm age of cancer cells, and it can potentially be exploited to monitor the health of HSCT recipients. Our data demonstrate that transplanted human hematopoietic stem cells have an intrinsic DNAm age that is unaffected by the environment in a recipient of a different age. 相似文献
17.
被子植物的种子发育从双受精开始, 产生二倍体的胚和三倍体的胚乳。在种子发育和萌发过程中, 胚乳向胚组织提供营养物质, 因此胚乳对胚和种子的正常生长发育至关重要。开花植物发生基因组印迹的主要器官是胚乳。印迹基因的表达受表观遗传学机制的调控, 包括DNA甲基化和组蛋白H3K27甲基化修饰以及依赖于PolIV的siRNAs (p4-siRNAs)调控。基因组印迹的表观遗传学调控对胚乳的正常发育和种子育性具有不可或缺的重要作用。最新研究显示, 胚乳的整个基因组DNA甲基化水平降低, 而且去甲基化作用可能源于雌配子体的中央细胞。该文综述了种子发育的表观遗传学调控机制, 包括基因组印迹机制以及胚乳基因组DNA甲基化变化研究的最新进展。 相似文献
18.
Baomin Li Juan Manuel Iglesias‐Pedraz Leng‐Ying Chen Fei Yin Enrique Cadenas Sita Reddy Lucio Comai 《Aging cell》2014,13(2):367-378
The Werner syndrome protein (WRN) is a nuclear protein required for cell growth and proliferation. Loss‐of‐function mutations in the Werner syndrome gene are associated with the premature onset of age‐related diseases. How loss of WRN limits cell proliferation and induces replicative senescence is poorly understood. Here, we show that WRN depletion leads to a striking metabolic shift that coordinately weakens the pathways that generate reducing equivalents for detoxification of reactive oxygen species and increases mitochondrial respiration. In cancer cells, this metabolic shift counteracts the Warburg effect, a defining characteristic of many malignant cells, resulting in altered redox balance and accumulation of oxidative DNA damage that inhibits cell proliferation and induces a senescence‐like phenotype. Consistent with these findings, supplementation with antioxidant rescues at least in part cell proliferation and decreases senescence in WRN‐knockdown cancer cells. These results demonstrate that WRN plays a critical role in cancer cell proliferation by contributing to the Warburg effect and preventing metabolic stress. 相似文献
19.
Caspase activation and degradation of deoxyribonucleic acid (DNA) damage response factors occur during in vitro T-cell proliferation, and an increased frequency of hypoxanthine-guanine phosphoribosyltransferase (HPRT)-negative variants have been reported in conditions associated with in vivo T-cell proliferation. We have applied two human somatic cell mutation reporter assays, for the HPRT and phosphatidylinositol glycan class A (PIG-A) genes, to human T cells activated in vitro with anti-CD3 and anti-CD28. We demonstrate proliferation throughout 6 weeks of cultivation, and find that the frequency of variant cells phenotypically negative for HPRT and PIG-A, respectively, increases from 10(-5) up to 10(-3) -10(-2). We also report preliminary evidence for low-density CpG methylation in the HPRT promoter suggesting that epigenetic modification may contribute to this markedly heightened rate of gene inactivation. 相似文献
20.
Blanchère M Saunier E Mestayer C Broshuis M Mowszowicz I 《The Journal of steroid biochemistry and molecular biology》2002,82(4-5):297-304
TGFβ can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGFβ function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGFβ1 and TGFβ2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGFβ1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGFβ secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGFβ which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGFβ secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGFβ, and to regulate this secretion through stromal–epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation. 相似文献