首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have shown that eastern gray squirrels and other animalsconsistently prefer to store intact acorns from the red oakgroup rather than those from the white oak group. We hypothesizedthat the ultimate advantage to this behavior comes from thedormancy of red oak acorns. Acorns of the white oak group germinateearly in the autumn; thus, we hypothesize that avoiding germinationis the primary selective advantage to the preference for cachingred oak acorns. Here, we test two alternative hypotheses toexplain the benefits of this caching preference: 1) storingred oak acorns allows the high tannin concentrations in redoak acorns to decline (making them more palatable), and 2) storingred oak acorns minimizes losses to insects, presuming they areless infested with insects. We also test the effect of germinationschedule on squirrel caching preferences directly, by presentingthem with dormant red oak acorns, and red oak acorns about togerminate. We find no evidence that tannin concentrations inred oak acorns decline, although tannin levels did decline inour white oak acorns. We found high losses to insect infestationsin one white oak species, but a second white oak species lostvery little mass to insects. Finally, we found that germinationschedule directly affects squirrel caching preferences: redoak acorns that are near germination are treated like whiteoak acorns. We conclude that the primary advantage to the preferencefor caching red oak acorns is that they are less perishable,due to their dormancy. We discuss the effects of this preferenceon the dispersal of red and white oak acorns, and the subsequenteffects of differential dispersal on the ecology and evolutionof oaks.  相似文献   

2.
Scatter-hoarding animals are crucial in seed dispersal of nut-bearing plants. We used the holm oak Quercus ilex—wood mouse Apodemus sylvaticus mutualism as a model system to evaluate the relative importance of seed size and fat content on scatter-hoarders’ foraging decisions influencing oak dispersal and potential recruitment. We performed a field experiment in which we offered holm oak acorns with contrasting seed size (2 vs 5 g) and fat content (3 vs 11%). Moreover, to test if the strength of these seed trait effects was context-dependent, experimental acorns were placed in small fragments, where natural regeneration is scarce or absent, and forest habitats. In small fragments, rodents had to face increased intraspecific competition for acorns and reduced anti-predator cover during transportation. As a result, they became more selective to ensure rapid acquisition of most valuable food items but, in turn, transported seeds closer to avoid unaffordable predation risks. During harvesting and caching, larger acorns were prioritized and preferentially cached. Fat content only had a minor effect in harvesting preferences. In contrast, in forest sites, where rodent abundance was four times lower and understory cover was well-developed, rodents were not selective but provided enhanced dispersal services to oaks (caching rates were 75% higher). From the plants’ perspective, our results imply that the benefits of producing costly seeds are context-dependent. Seed traits modified harvesting and caching rates only when rodents were forced to forage more efficiently in response to increased intraspecific competition. However, when landscape traits limited cache protection strategies, a more selective foraging behavior by scatter-hoarders did not result in enhanced dispersal services. Overall, our result shows that successful dispersal of acorns depends on how specific traits modulate their value and how landscape properties affect rodents’ ability to safeguard them for later consumption.  相似文献   

3.
Scatter-hoarding rodents such as tree squirrels selectively cache seeds for subsequent use in widely-spaced caches placed below the ground surface. This behavior has important implications for seed dispersal, seedling establishment, and tree regeneration. Hoarders manage these caches by recovering and eating some seeds, and moving and re-caching others. This process of re-caching, however, is poorly understood. Here, we use radio-telemetry to evaluate re-caching behavior for the management of acorn caches by rodents in eastern deciduous forests. We also test the hypothesis that as seeds are re-cached, the distance from the source increases. Radio transmitters were implanted in Northern red oak (Quercus rubra) acorns and presented to rodents in a natural setting over 3 seasons. We used radio-telemetry to track and document evidence of recovery and re-caching. We tracked a total of 102 acorns. Of the 39 radio-tagged acorns initially cached, 19 (49%) were cached on two or more occasions; one acorn was cached four times. The hypothesis that rodents move seeds to progressively greater distances from the source is not well-supported, suggesting that acorns are being moved within an individual's home range. Given the species of rodents in the study area, gray squirrels (Sciurus carolinensis) are the most likely to be responsible for the caching and re-caching events. Gray squirrels appear to engage in extensive re-caching during periods of long-term food storage, which has important implications for understanding how caching behavior influences acorn dispersal and oak regeneration.  相似文献   

4.
In this study we assessed the effectiveness of rodents as dispersers of Quercus ilex in a patchy landscape in southeastern Spain. We experimentally followed the fates of 3,200 marked and weighed acorns from dispersal through the time of seedling emergence over three years. Rodents handled about 99% of acorns, and dispersed 67% and cached 7.4% of the dispersed acorns. Most caches were recovered and consumed, and only 1.3% of the original experimental acorns were found alive in caches the following spring. Dispersal distances were short (mean = 356.2 cm, median = 157 cm) and strongly right-skewed. Heavier acorns were dispersed further and were more likely to be cached and survive than lighter acorns. All caches were in litter or soil, and each contained a single acorn. Rodents moved acorns nonrandomly, mostly to oaks and pines. Most surviving acorns were either in oaks, a poor microhabitat for oak recruitment, or shrubs, a suitable microhabitat for oak recruitment. Our results suggest that rodents, by burying a relatively high proportion of acorns singly in shrubs and pines, act as moderately effective dispersers of Q. ilex. Nonetheless, this dispersal comes at a very heavy cost.  相似文献   

5.
We examined post-fire recovery of two components of acorn production (percentage of bearing ramets [stems] and number of acorns per bearing ramet) for four species of oaks in southern ridge sandhill vegetation in south-central peninsular Florida. Annual counts of acorns on two white oaks (Quercus chapmanii and Q. geminata) and two red oaks (Q. laevis and Q. myrtifolia) were conducted annually (except in 1991) on two 2.7-ha grids from 1969 to 1998. A prescribed burn was conducted on one of the grids in May 1993. Newly sprouted ramets of both white oaks produced acorns during the first year following the fire, whereas red oaks required 3 yr (Q. myrtifolia) or 4 yr (Q. laevis) to produce acorns. The difference in the timing of post-fire acorn production between the white and red oak species reflected the difference in the number of years from flower bud initiation to mature acorns in the two groups, with the additional year-long lag in Q. laevis probably attributable to the fact that it is typically a tree rather than a shrub species. The data suggested that percentage of bearing ramets in the smallest size class of the two white oak species was markedly lower in the burned than unburned grid in the first year of post-fire acorn production and higher in the fifth year, but these trends were not evident for the red oaks. Among all four species, differences between mean number of acorns in burned and unburned grids were significant in only two cases (the largest size class of both white oak species in the fifth year). There was no evidence of recruitment from acorns on the burned grid, possibly due to the rapid redevelopment of the shrub layer because of low mortality of the extensive clonal root systems. Rapid post-fire recovery of acorn production in xeric fire-prone habitats is presumably the result of selection to increase the probability of recovery and persistence following sufficiently intense fires that result in high oak mortality. The timing and magnitude of post-fire acorn production in sandhill and other xeric Florida associations has a potential impact on a wide variety of insects, birds, and mammals that feed on acorns, as well as on the species with which they interact.  相似文献   

6.
By caching acorns, jays serve as important dispersal agents for oak (Quercus) species. Yet little is known about which acorn characteristics affect selection by jays. In the traditional model of jay/oak symbiosis, large, brown, ripe acorns free of invertebrate parasites (e.g., Curculio acorn weevils) are selected by jays. Recently, it has been suggested that a tri-trophic relationship between oaks, jays, and weevils may have evolved to counter the negative dietary effects of acorn tannins. Under the tri-trophic model, jays would preferentially select acorns containing weevil larvae. We tested the assumptions that (1) acorns containing curculionid larvae exist in sufficient quantities to support jay populations and (2) jays can detect, and preferentially select, acorns containing weevil larvae, and investigated the cues by which jays select acorns. Captive Mexican jays (Aphelocomaultramarina) were presented Emory oak (Quercusemoryi) acorns in aviary feeding trials. Large, dense, viable acorns free of curculionid larvae were preferentially selected. Contrary to results of previous research, color did not affect selection. Acorn viability increased and curculionid larval occupancy decreased in adjacent savannas and isolated stands relative to existing oak woodland, perhaps favoring oak recruitment into adjacent lower-elevation grasslands. Our results compel us to reject the tri-trophic model for this system, and are consistent with the traditional jay/oak symbiosis model. Relatively long-distance dispersal of viable acorns favors Emory oak replacement, and spatial patterns of acorn viability and curculionid parasitism suggest expansion of Emory oak into adjacent low-elevation semi-arid grasslands. Received: 29 February 1996 / Accepted: 26 September 1996  相似文献   

7.
The responses of rodent populations to acorn masting were examined by reviewing 17 studies from the aspect of acorn nutrients and defensive chemicals. Oak species were grouped into three types based on their acorn nutritional characteristics by cluster analysis: Type 1 acorns (two North American red oaks, subgenus Erythrobalanus) were high in tannins and high in fat and proteins (and consequently rich in metabolizable energy); Type 2 acorns (two Japanese evergreen oaks, Cyclobalanopsis; three Japanese deciduous oaks, Lepidobalanus; one North American white oak, Lepidobalanus) were high in tannins but low in fat and proteins; and Type 3 acorns (one Cyclobalanopsis species; seven Lepidobalanus species) were low in tannins and had intermediate levels of fat and proteins. These three acorn groups were nutritionally, and thereby ecologically, not equivalent. Rodents, in general, responded differently to acorn masting depending on their feeding habits and the nutritional characteristics of acorns. Granivorous rodents showed positive responses to masting of Type 1 and 3 acorns, whereas rodents with feeding habits intermediate between granivory and herbivory showed positive responses to masting of Type 3 acorns. In addition, for herbivorous rodents, the responses to masting of any types of acorns have not been reported. The present findings emphasize that the relationship between rodents and acorn masting should not easily be generalized, because there are large variations in characteristics of both acorns and rodents. The viewpoint presented in this review could offer more convincing interpretations to the contradictory observations, found in the studies reviewed, on the response of rodent populations to acorn masting.  相似文献   

8.
外果皮厚度和种子大小对五种栎属橡子扩散的影响   总被引:1,自引:0,他引:1  
动物对种子的扩散和贮藏是一个复杂的生态学过程,常常受到种子特征的影响。有关种子特征如何影响动物对种子扩散,许多研究结果并非完全一致。我们于2009 年9 月在黑龙江东方红林场野外和围栏内释放五种栎属橡子(Quercus mongolica,Q.serrata var. brevipetiolata,Q. aliena,Q.variabilisQ. liaotungensis),研究种子特征对鼠类(Apodemus peninsulae, Clethrionomys rufocanus Tamias sibiricus)扩散和埋藏橡子的影响。野外释放结果表明:橡子大小和外果皮厚度显著影响鼠类对橡子的扩散和埋藏。鼠类偏向扩散和埋藏种皮厚的大橡子,种皮薄的小橡子则多被原地取食。种皮厚的大橡子扩散距离显著高于种皮薄的小橡子。然而,只有外果皮的厚度显著影响围栏内花鼠对橡子的扩散和埋藏,橡子大小并非主要的影响因素。种子特征影响种子扩散的效应可能在种群和群落水平上存在差异。  相似文献   

9.
This study examined variation in two components of acorn production. Percentage of bearing ramets (stems) and number of acorns per bearing ramet were examined in five clonal oaks in three xeric habitats of south-central peninsular Florida in relation to ramet size within and between species and vegetative associations. Counts of acorns on two white oaks (Quercus chapmanii and Q. geminata) and three red oaks (Q. inopina, Q. laevis, and Q. myrtifolia) were conducted annually from 1969 to 1996 (except in 1991) on permanent grids in southern ridge sandhill, sand pine scrub, and scrubby flatwoods associations at the Archbold Biological Station, Florida, USA. Percentage of bearing individuals and mean number of acorns per bearing individual increased with increasing ramet size for all species across all vegetation associations. However, in Q. geminata and Q. myrtifolia, acorn production declined in the largest size class (>3.2 m), implying that larger individuals of these clonal species may become senescent. All oak species in sand pine scrub, which had a nearly closed overstory, had lower frequencies of bearing oaks and mean numbers of acorns compared with similar-sized individuals of the same species in the more open-canopied southern ridge sandhill and scrubby flatwoods associations, suggesting light limitation. The annual production of acorns by a given oak species was correlated across vegetative associations and annual acorn production of oak species was correlated for species within the same section. Intermediate-size class oaks contributed the most acorns per unit area, suggesting that stands managed with short fire-return times will provide fewer acorns to wildlife than stands managed to produce more variable distributions of oak size classes. However, our study suggests that long-unburned stands, such as those studied here, will maintain relatively constant levels of acorn production as a consequence of ramet replacement within the clones of these shrubby oaks to create a variable distribution of size classes. Of the oak species studied, Q. myrtifolia had the highest acorn production and the smallest acorns, while Q. laevis had the lowest acorn production and the largest acorns, suggesting an allocation trade-off between acorn numbers and size.  相似文献   

10.
In this paper, I analyse the interaction between the holm-oak Quercus ilex , and one of its main dispersers, the European jay Garrulus glandarius , in an heterogeneous Mediterranean landscape. I quantify the spatial dispersal pattern of the seed shadow at two spatial scales, landscape (among patches) and microhabitat (within patches), by directly tracking the movement of seeds. Two main traits of the jay-mediated dispersal of holm-oak acorns across the landscape, the spatial pattern of dissemination and the distance from the source tree, are significantly and directly influenced by jay activity. Jays moved acorns nonrandomly, avoiding one main patch type of the study area to cache acorns, the shrubland-grasslands, and moving most of the acorns to pine stands, whether afforestation or open pinewoods. Within each patch type, jays had also a strong preference for caching acorns in some microhabitats, since>95% of the acorns dispersed by jays were cached beneath pines. The distance of holm-oak acorn dispersal was long in the study site, over 250 m, with some dispersals occurring up to 1 km from the source oaks. The shape of the dispersal kernel function fitted to the dispersal pattern produced by jays differed from those quantified for many other plant species. Jay-mediated dispersal had two components, one local and another produced by long-distance dispersal. Due to the heterogeneity of these Mediterranean environments, this difference in scale overlaps with a difference in habitat composition, short distances events resulting in dispersals within the same oak stands and long distance events resulting in dispersal outside of oak stands, usually to other vegetation units. Jay activity and movement pattern can have thus dramatic effects on both the local regeneration as well as the potential for regional spread of the holm-oak populations.  相似文献   

11.
Summary In a Danish heathland invasion of oak shrub has taken place, the succession rate being approximately 300 m during the last 100 years. The colonisation has occurred in steps related to the delay time between seedling stage and fertility stage. Seedlings are often found in clusters originating from caches probably made by seed-eating rodents. Apodemus sylvaticus, A. flavicollis and Clethrionomys glareoles. These rodents reached autumn densities of 25–50 individuals per ha. Radioactive acorns were scatterhoarded by the rodents, which mainly deposited the acorns singly up to at least 34 m from the oak shrub (mean 15.3±8.2 m), and preferably under Empetrum nigrum mats in the walls of runways Seedlings originating from radioactive acorns were found next summer at distances of 4–37 m from the oak shrub. In early summer caches containing new seedlings had a mean size of 2.0±2.2 acorns, range 1–16; mean distance of seedlings to nearest crown projection was 24.0±23.6 m, range 1–137. Thus, rodent acorn dispersal can explain the observed succession rate of oaks into the heathland  相似文献   

12.
Rodents change acorn dispersal behaviour in response to ungulate presence   总被引:3,自引:0,他引:3  
Alberto Muñoz  Raúl Bonal 《Oikos》2007,116(10):1631-1638
Small rodents are prominent seed predators, but they also favour plant recruitment as seed dispersers. The direct interactions of ungulates on plants are more one‐sided and negative, as they mainly reduce plant recruitment through predation on seeds and seedlings. The effects of small rodents and ungulates on plant recruitment have been considered and studied as independent episodes within plant regeneration cycles. However, ungulate–rodent interactions and their potential effects on plant regeneration have not been considered so far. A number of studies have recently documented ungulate effects on the abundance, diversity and spatial distribution of small rodents. Here, we hypothesize that ungulates may also affect rodent seed dispersal behaviour. We monitored acorn dispersal by small rodents (Mus spretus and Apodemus sylvaticus) in oak woodlands with and without exclosures for large ungulates, mainly red deer, Cervus elaphus, and wild boar, Sus scrofa. The study was carried out in a typical Mediterranean Holm oak, Quercus ilex, forest throughout the acorn fall season in 2003 and 2004. We found that, in both years, the proportion of acorns cached and not recovered in the short‐term was, on average, lower in the presence (1.4%) than in the absence (19.9%) of ungulates. Acorn dispersal distances were not affected by ungulate presence in either year. However, ungulates had an effect on the spatial distribution of dispersed seeds; rodents apparently avoided shrubs as caching sites in both years. This result was interpreted as a behavioural response to reduce the risk of cache pilferage by conspecifics, which are closely associated with shrubs in presence, but not in absence, of ungulates. Potential effects of different densities of rodents or predators were discarded, as none of them differed between the areas with and without ungulates. The present study found significant interactions between heterospecific seed and seedling consumers that had been considered as independent episodes within tree regeneration cycles. As a result of such interactions, ungulates may have negative indirect effects on oak recruitment by reducing (1) acorn caching frequency, and (2) the proportion of acorns cached under shrubs, key nurse‐plants for the establishment of Holm oak seedlings in Mediterranean areas.  相似文献   

13.
Various methods have been used to track seed dispersal of large-seeded species; however, the influence of different seed tracking methods on ecological outcomes of seed dispersal by animals is not well evaluated. Acorn removal by food hoarding animals and the following seedling establishment of Mongolian oak (Quercus mongolica) were investigated in Xiaoxing’anling Mountain, Heilongjiang, northeastern China, by using four different marking methods: plastic tagging, nail insertion, hole drilling, and isotope labeling. The acorn removal speed differed among marking methods, with plastic-tagged acorns being removed more slowly than those marked with nails, holes, and isotope. By checking the attached cotyledons and performing isotope analyses, more seedlings were found to establish from nailed acorns and isotope-soaked acorns than from drilled acorns and plastic-tagged acorns. Plastic-tagged acorns were transported closer than those marked with nails, holes, and isotope. Moreover, seedlings were often found clustered in caches containing acorns marked with plastic tags. Low level of cotyledon predation by animals makes it possible to directly identify focal seedlings of white oaks based on the attached cotyledons. Considering cotyledon predation by animals, coupling minor modification of cotyledons with isotope labeling appears to be an easy way to explore the actual pattern of seed dispersal of large-seeded trees, e.g., oaks.  相似文献   

14.
We experimentally examined spatial and temporal patterns of seed predation on three tree species in an oak-pine forest in southern Maine. USA, Rodents were the principal seed predators. Rates of seed loss varied with tree species and exposure to three different suites of potential seed predators (all vertebrate seed predators, medium-sized rodents [primarily squirrels] and small rodents [primarily mice and voles]), Acer rubrum seeds were removed more slowly (mean of 17.7% within 2 d across all habitats and treatments in 1991) than seeds of either Quereus rubra or Pinus strobus (e,g., > 99% removed within 2 d across all habitats and treatments for each species in 1991), Levels of final removal (cumulative removal at final census) varied with year but not with microhabitat; i.e., seed predation in four types of forest gap was not significantly different than in intact forest. Both field data and experimental feeding trials with captive Peromyscus leucopus and Clethrionomys gapperi suggest that a significant proportion of while pine seeds is eaten at time of detection, while red oak acorns are more likely to be cached. Captive Peromyscus leueopus cached and ate significantly more red oak acorns than Clethrionomys gapperi. These results suggest that red oak mast may be more important in overwintering success in Feromyscus than in Clethrionomys. Nevertheless, both species did consume red oak acorns, suggesting that in southern Maine these species are not substantially inhibited by high tannin levels in red oak acorns, as has been suggested by researchers elsewhere.  相似文献   

15.
Several squirrel species excise the embryo of acorns of most white oak species to arrest germination for long‐term storage. However, it is not clear how these acorns counter embryo excision and survive in the arms race of coevolution. In this study, we simulated the embryo excision behavior of squirrels by removing 4 mm of cotyledon from the apical end of white oak acorns differing in embryo depths to investigate the effects of embryo excision on acorn germination and seedling performance of white oak species. The embryo depth in the cotyledons was significantly different among white oak acorns, with Quercus mongolica containing the embryo most deeply in the acorns. We found that artificial embryo excision significantly decreased acorn germination rates of Quercus variabilis, Quercus acutissima, Quercus aliena, Quercus aliena var. acutiserrata, Quercus serrata. var. brevipetiolata but not Q. mongolica. Artificial embryo excision exerted significant negative impacts on seedling performance of all oak species except Quercus aliena. Our study demonstrates the role of embryo depth of acorns in countering embryo excision by squirrels and may explain the fact that squirrels do not perform embryo excision in acorns of Q. mongolica with deeper embryos. This apparent adaptation of acorns sheds light on the coevolutionary dynamics between oaks and their seed predators.  相似文献   

16.
张博  石子俊  陈晓宁  廉振民  常罡 《生态学报》2014,34(14):3937-3943
森林鼠类的种子贮藏行为对植物的扩散和自然更新有着非常重要的影响。然而,鼠类是否具有鉴别虫蛀种子的能力还存在一定的争议。此外,鼠类的鉴别能力是否受到食物丰富度变化的影响也未见相关报道。采用标签标记法,2011年秋季(9—11月,食物丰富季节)和2012年春季(4—6月,食物匮乏季节)分别在秦岭南坡的佛坪国家级自然保护区内,调查了森林鼠类对完好和虫蛀锐齿槲栎(Quercus aliena)种子的选择差异。结果显示:1)在秋季,尽管2种类型种子的存留动态没有显著差异,但是在后期虫蛀种子的存留时间相对更长;而在春季2种类型种子的存留动态则极为显著,几乎所有的完好种子(99%)在释放后的第3天就被鼠类全部扩散,虫蛀种子的存留时间则相对较长。2)在秋季,鼠类更喜好扩散后取食完好种子;而在春季,鼠类则喜好在原地取食绝大部分的种子,并且优先取食完好种子。3)在秋季,鼠类贮藏了更多的完好种子;而在春季,尽管完好种子在释放后第1天便达到贮藏高峰,然而由于后期的大量被捕食,2种类型种子在贮藏动态上没有显示出显著差异。研究结果表明秦岭地区森林鼠类可以准确区分完好与虫蛀种子,但是食物丰富度会影响鼠类对种子的选择策略。在食物丰富的秋季,鼠类更多地选择贮藏完好种子;而在食物相对匮乏的春季,鼠类更倾向于同时取食2种类型种子。森林鼠类通过对2种类型种子的鉴别和选择,影响不同种子的命运,从而可能对种子的扩散和自然更新产生重要影响。  相似文献   

17.
Early germination of white oaks is widely viewed as an evolutionary strategy to escape rodent predation; yet, the mechanism by which this is accomplished is poorly understood. We report that chestnut oak Quercus montana (CO) and white oak Q. alba (WO) (from North America), and oriental cork oak Q. variabilis (OO) and Mongolian oak Q. mongolica (MO) (from Asia) can escape predation and successfully establish from only taproots. During germination in autumn, cotyledonary petioles of acorns of CO and WO elongate and push the plumule out of the cotyledons, whereas OO and MO extend only the hypocotyls and retain the plumule within the cotyledons. Experiments showed that the pruned taproots (>6 cm) of CO and WO acorns containing the plumule successfully germinated and survived, and the pruned taproots (≥12 cm) of OO and MO acorns without the plumule successfully regenerated along with the detached acorns, thus producing two seedlings. We argue that these two distinct regeneration morphologies reflect alternative strategies for escaping seed predation.  相似文献   

18.
Partial consumption of acorns by rodents, birds, and insects has been widely reported in various oak species. However, to what extent these partially eaten acorns contribute to the regeneration of oak trees is poorly understood. To date, there is limited knowledge of the effects of seed availability on partial consumption of acorns. Herein, we released tagged Quercus mongolica acorns in two consecutive years with different seed crops, to explore the probability of partial acorn consumption. We also placed simulated partially consumed acorns in the field to investigate their contribution to regeneration of white oak. Our results showed that more acorns were partially eaten in a good crop year than in poor crop year, reflecting an effect of predator satiation on acorn partial consumption by rodents at the population level. Partially eaten acorns were more likely to be damaged at the basal end, suggesting consistent consumption preferences of small rodents. Although, partially consumed acorns were less likely to be scatter-hoarded by small rodents, they germinated more rapidly than the intact acorns in the field, offsetting the negative effects of the non-buried deposition. Despite lower germination rates, lightly damaged acorns exhibited greater growth of roots and shoots, suggesting a compensatory response to partial acorn consumption. Partial consumption may spread predation pressure on acorns and thus appears to be much better for the plant than total consumption by seed-eating animals. Therefore, partially consumed acorns as dispersal leftovers may play a potential role in natural regeneration of Quercus mongolica, especially in mast years. However, this role and the underlying mechanisms of partial acorn consumption by rodents, birds, and herbivore insects need further investigation.  相似文献   

19.
Land‐use changes are expected to affect plant–disperser conditional mutualisms through changes in animal behavior. We analyzed the oak–rodent conditional mutualism in Mediterranean fragmented forests at two climatically different locations. We quantified fragmentation effects on seed dispersal effectiveness and assessed if such effects were due to changes in habitat structure and intraspecific competition for acorns in fragmented areas. Fragmentation decreased cover from predators within mouse territories as well as intraspecific competition for acorns. This resulted in lower dispersal effectiveness in small forest fragments. Globally, habitat structure was the main driver in mouse foraging decisions. In small fragments, low shelter availability precluded mouse movements, leading to short mobilization distances and low caching rates. However, as the proportion of cover from predators increased, mice were able to modulate their foraging decisions depending on intraspecific competition for acorns, resulting in higher dispersal quality. In addition to fragmentation effects, delayed breeding in the southern locality caused lower number of rodents during the dispersal season, which reduced acorn mobilization rates. Our study shows that seed dispersal patterns in managed systems can be analyzed as the result of management effects on key environmental factors in dispersers’ foraging decisions.  相似文献   

20.
Rodent acorn selection in a Mediterranean oak landscape   总被引:5,自引:0,他引:5  
Quercus suber, Quercus ilex and Quercus coccifera (Cork, Holm and Kermes oaks, respectively) are common evergreen oak species that coexist in the landscapes of the western part of the Mediterranean basin. Rodents are the main acorn predators and thus one of the main factors for understanding recruitment patterns in oaks. In this paper we analyse to what extent mice prefer acorns from one oak species over another in three oak species studied using acorn removal experiments and video tape recordings. Twenty labelled acorns from each of the three Quercus species (60 acorns) were placed in 40 cm×40 cm quadrats on each plot. Because selection might vary as a result of the vegetation context, we performed the trials in the five main vegetation types within the study area (four replicates in each vegetation type) in order to control for habitat influences on rodent acorn preferences (a total of 20 plots). The removal of 1,200 acorns occurred within 68 days. Mice removed 98.7% of the acorns. Q. ilex acorns were preferred over Q. suber and Q. coccifera in all vegetation types except in pine forest, where no acorn preferences were detected. Acorn removal rates differed with vegetation type, correlating positively with shrub cover. The distance at which acorns were displaced by rodents (mean =4.6 m±5.1 SD) did not differ between acorn species, but varied among vegetation types. Bigger acorns of Q. coccifera were selected only after Q. ilex and Q. suber acorns were depleted, while no size selection was detected for the latter two species. Thus, we conclude that rodents show preference for some oak acorns and that landscape context contributes significantly to rodent activities and decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号