首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).  相似文献   

2.
Trichocyte intermediate filament protein (IFP) is a heterodimeric complex that plays a pivotal role in the hair shaft for its mechanical strength, hair shape, and so on. Trichocyte IFP consists of acidic-type IFP and basic-type IFP, and the well-studied supramolecular assembly process of the complex occurs via the following steps: dimer formation, tetramer formation, formation of the lateral 32mer, and the elongation of the 32mer. Among these interactions, only the dimer formation, owing to coiled-coil interaction, has been described in detail; the nature of other interactions remains unspecified. For each assembly step, we report interaction isotherms obtained by means of isothermal titration calorimetry at various urea and NaCl concentrations. Decreasing the urea concentration generally promotes protein refolding, and we therefore expected to observe endothermic interactions owing to the refolding process. However, exothermic interactions were observed at 4 and 2 M urea, along with various characteristic endothermic interactions at the other urea concentrations as well as NaCl titration. The thermal responses described herein enabled us to analyze the protein supramolecular assembly process in a stepwise manner.  相似文献   

3.
The I variant of placental alkaline phosphatase was purified to homogeneity by means of DEAE-cellulose chromatography, isoelectric focusing, and gel filtration on AcA-34. The specific activity of the I variant was found to be 3.33 kat/mg. The enzyme is a dimer with an isoelectric point of 4.6 and a molecular weight of 120,000 as determined by sodium dodecylsulfate electrophoresis. The amino acid composition and other physicochemical properties of the I variant were compared with those of the more common F and S variants. The low activity associated with the I variant is apparently not due to a low specific activity, but to decreased molecular stability. The behavior in the ultracentrifuge and other observations suggest that the I variant differs from the F and S variants in surface charge distribution.This investigation was supported by grants from the Swedish Medical Research Council (projects No. 4217 and No. 03X-2725) and from the Medical Faculty, University of Umeå.  相似文献   

4.
The crystal structure of the acyl complex of porcine pancreatic elastase with its peptidyl ester substrate N-acetyl-ala-ala-ala-methyl ester (Ac(Ala)3OMe) has been determined at 2.5 Å resolution. The complex was stabilized by exploiting the “glass transition” in protein dynamics that occurs at around −53 °C (220 K). Substrate was flowed into the crystal in a cryoprotective solvent above this temperature, and then the crystal was rapidly cooled to a temperature below the transition to trap the species that formed. The use of a flow cell makes the experiment a kinetic one and means that the species prior to the rate determining transition state has a chance to accumulate. The resulting crystal structure shows an acyl-enzyme intermediate in which the leaving group is absent and the carbonyl carbon of the C-terminal alanine residue is covalently bound to the gamma oxygen of the active site serine. The ester carbonyl shows no significant distortion from planarity, with the carbonyl oxygen forming one hydrogen bond with the oxyanion hole. The tripeptide is bound in an extended antiparallel β-sheet with main chain residues of the enzyme. The geometry and interactions of this acyl-enzyme suggest that it represents a productive intermediate. To test this hypothesis, the same crystal was then warmed above the glass transition temperature and a second data set was collected. The resulting electron density map shows no sign of the substrate, indicating hydrolysis of the intermediate followed by product release. This experiment provides direct evidence for the importance of dynamic properties in catalysis and also provides a blueprint for the stabilization of other short-lived species for direct crystallographic observation.  相似文献   

5.
BphC derived from Pseudomonas sp. strain KKS102 is an extradiol-cleaving catecholic dioxygenase. This enzyme contains a non-heme iron atom and plays an important role in degrading biphenyl/polychlorinated biphenyls (PCBs) in the microbe. To elucidate detailed structures of BphC reaction intermediates, crystal structures of the substrate-free form, the BphC-substrate complex, and the BphC-substrate-NO (nitric oxide) complex were determined. These crystal structures revealed (1) the binding site of the O(2) molecule in the coordination sphere and (2) conformational changes of His194 during the catalytic reaction. On the basis of these findings, we propose a catalytic mechanism for the extradiol-cleaving catecholic dioxygenase in which His194 seems to play three distinct roles. At the early stage of the catalytic reaction, His194 appears to act as a catalytic base, which likely deprotonates the hydroxyl group of the substrate. At the next stage, the protonated His194 seems to stabilize a negative charge on the O2 molecule located in the hydrophobic O2-binding cavity. Finally, protonated His194 seems to function as a proton donor, whose existence has been proposed.  相似文献   

6.
Protic ionic liquids (PILs) are currently being shown to be as interesting and valuable to chemical manipulations as the well-known aprotic ionic liquids (APIL). PILs have the additional advantage that the proton activity (PA) can be adjusted by the choice of Bronsted base and Bronsted acid used in their formation. In the absence of solvent, the PA plays the role of pH in ordinary solutions. Previously, we have shown that solution of proteins in ionic-liquid-rich solutions conveys surprising stabilization against hydrolysis and aggregation, permitting multiple unfold/refold cycles without loss to aggregation. Here, we show that the denaturing temperatures of both hen egg white lysozyme and ribonuclease A are sensitive to the PA of the PIL as much as they are to pH in aqueous solutions. A maximum stability for more basic solutions is found, and the unfolding process is well described by the two-state (cooperative) model. Finally, we show that, by PA tuning, the PILs can select folding pathways featuring the postulated intermediates so that they are fully populated during the unfolding process. The intermediates are themselves capable of multiple unfold/refold cycles with little loss per cycle to aggregation process.  相似文献   

7.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.  相似文献   

8.
The effect of temperature on the activity of acid phosphatase [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] immobilized as a gel layer on the inner wall of ultrafiltration tubular membranes by both copolymerization/gelation and cogelation has been investigated. Both forms of gel-immobilized enzyme showed fairly good stability, the activation energy of their inactivation being significantly lower than that of the free enzyme and of the heat denaturation of proteins in general. The shear effect on the cogelled enzyme was also studied at different temperatures and Reynolds numbers. The results indicated that the cogelled enzyme is a more convenient form for continuous operation in the tubular membrane reactor (TMR), a reactor configuration particularly suitable for industrial applications.  相似文献   

9.
Src kinase plays an important role in several signaling and regulation mechanisms in vivo. Enzymatic activity is tightly regulated through the phosphorylation and dephosphorylation of tyrosine 527, which is placed at the C-terminal tail. Here, we have addressed domain rearrangements involved in the regulation mechanism of Src kinase in solution using small-angle X-ray scattering. In the phosphorylated wild-type form of Src kinase corresponding to the inactive state of the protein, a single conformation compatible with a closed crystallographic structure was found in solution. In the Y527F point mutant representing the active state, analysis of scattering data reveals an equilibrium between two differently populated conformations differing in the radius of gyration by 5 Å. The major species (85% of the total population) presents a closed conformation indistinguishable from the crystallographic structure of the inactive state. The minor species (15% of the total population) is an open conformation similar to the crystallographic structure in the active state. The latter structure has the SH3, SH2, and SH2-catalytic domain linker assembled as a pseudo-two-domain protein. The regulation model emerging from this study, including at least three different conformational states, allows the tight regulation of the enzyme without compromising fast response in the presence of natural targets.  相似文献   

10.
Summary Evans blue was injected into the soleus muscle of albino mice in order to mark retrogradely the corresponding motoneurons of the spinal cord. Subsequently, reaction kinetics of acid phosphatase were studied in the marked nerve cells. 41–51 motoneurons per animal were counted. They are located in the dorsolateral portion of the Rexed zone IX where they form motor cell columns approximately 1.5 mm in length. After identification of the motoneurons, the enzyme reaction for acid phosphatase was performed by covering the section with a gel film containing naphthol-AS-BI-phosphate-hexazonium-pararosanilin. The formation of the azo dye was measured cytophotometrically at 520 nm. During the first 10 min of registration, a linear decrease in transmission of 0.4 per cent/min was shown. Because of the unimodal distribution of changes in transmission, the motoneurons of the soleus muscle could not be characterized as fast or slow types on the basis of the reaction kinetics of acid phosphatase.Dedicated to Professor Berta Scharrer in honor of her 70th birthdayThe author wishes to thank G. Bigdeli Azari, M. Dietrich and D. Vaihinger for skillful technical assistance  相似文献   

11.
The multivesicular body (MVB) pathway functions in multiple cellular processes including cell surface receptor down-regulation and viral budding from host cells. An important step in the MVB pathway is the correct sorting of cargo molecules, which requires the assembly and disassembly of endosomal sorting complexes required for transport (ESCRTs) on the endosomal membrane. Disassembly of the ESCRTs is catalyzed by ATPase associated with various cellular activities (AAA) protein Vps4. Vps4 contains a single AAA domain and undergoes ATP-dependent quaternary structural change to disassemble the ESCRTs. Structural and biochemical analyses of the Vps4 ATPase reaction cycle are reported here. Crystal structures of Saccharomyces cerevisiae Vps4 in both the nucleotide-free form and the ADP-bound form provide the first structural view illustrating how nucleotide binding might induce conformational changes within Vps4 that lead to oligomerization and binding to its substrate ESCRT-III subunits. In contrast to previous models, characterization of the Vps4 structure now supports a model where the ground state of Vps4 in the ATPase reaction cycle is predominantly a monomer and the activated state is a dodecamer. Comparison with a previously reported human VPS4B structure suggests that Vps4 functions in the MVB pathway via a highly conserved mechanism supported by similar protein-protein interactions during its ATPase reaction cycle.  相似文献   

12.
The homologue of the phosphoprotein PII phosphatase PphA from Thermosynechococcus elongatus, termed tPphA, was identified and its structure was resolved in two different space groups, C2221 and P41212, at a resolution of 1.28 and 3.05 Å, respectively. tPphA belongs to a large and widely distributed subfamily of Mg2+/Mn2+-dependent phosphatases of the PPM superfamily characterized by the lack of catalytic and regulatory domains. The core structure of tPphA shows a high degree of similarity to the two PPM structures identified so far. In contrast to human PP2C, but similar to Mycobacterium tuberculosis phosphatase PstP, the catalytic centre exhibits a third metal ion in addition to the dinuclear metal centre universally conserved in all PPM members. The fact that the third metal is only liganded by amino acids, which are universally conserved in all PPM members, implies that the third metal could be general for all members of this family. As a specific feature of tPphA, a flexible subdomain, previously recognized as a flap domain, could be revealed. Comparison of different structural isomers of tPphA as well as site-specific mutagenesis implied that the flap domain is involved in substrate binding and catalytic activity. The structural arrangement of the flap domain was accompanied by a large side-chain movement of an Arg residue (Arg169) at the basis of the flap. Mutation of this residue strongly impaired protein stability as well as catalytic activity, emphasizing the importance of this amino acid for the regional polysterism of the flap subdomain and confirming the assumption that flap domain flexibility is involved in catalysis.  相似文献   

13.
Many bacterial surface proteins containing an LPXTG motif are anchored to the cell wall peptidoglycan by catalysis with the thiol transpeptidase sortase. The transpeptidation and hydrolysis reactions of sortase have been proposed to proceed through a common acyl enzyme intermediate. The reactions of Staphylococcus aureus sortase with fluorogenic substrate Abz-LPETG-Dnp in the presence or absence of triglycine were characterized in this study to gain additional insight into the kinetic mechanism of sortase. We report here the development of a reverse-phase HPLC assay to identify and characterize sortase reaction intermediates. The HPLC results provide for the first time clear evidence for the formation of a kinetically competent acyl enzyme intermediate during the overall transpeptidation reaction. The results also suggest that sortase undergoes an unexpected intramolecular acyl transfer reaction in the absence of a nucleophile. The significance of this type of HPLC assay as a tool to study enzyme mechanism is discussed.  相似文献   

14.
Ceruloplasmin is a copper protein found in vertebrate plasma, which belongs to the family of multicopper oxidases. Like transferrin of the blood plasma, lactoferrin, the iron-containing protein of human milk, saliva, tears, seminal plasma and of neutrophilic leukocytes tightly binds two ferric ions. Human lactoferrin and ceruloplasmin have been previously shown to interact both in vivo and in vitro forming a complex. Here we describe a study of the conformation of the human lactoferrin/ceruloplasmin complex in solution using small angle X-ray scattering. Our ab initio structural analysis shows that the complex has a 1:1 stoichiometry and suggests that complex formation occurs without major conformational rearrangements of either protein. Rigid-body modeling of the mutual arrangement of proteins in the complex essentially yields two families of solutions. Final discrimination is possible when integrating in the modeling process extra information translating into structural constraints on the interaction between the two partners.  相似文献   

15.
Stable intermediate states and high energy barriers in the unfolding of GFP   总被引:2,自引:0,他引:2  
We present a study of the denaturation of a truncated, cycle3 variant of green fluorescent protein (GFP). Chemical denaturation is used to unfold the protein, with changes in structure being monitored by the green fluorescence, tyrosine fluorescence and far-UV circular dichroism. The results show that the denaturation behaviour of GFP is complex compared to many small proteins: equilibrium is established only very slowly, over the time course of weeks, suggesting that there are high folding/unfolding energy barriers. Unfolding kinetics confirm that the rates of unfolding at low concentrations of denaturant are very low, consistent with the slow establishment of the equilibrium. In addition, we find that GFP significantly populates an intermediate state under equilibrium conditions, which is compact and stable with respect to the unfolded state (m(IU)=4.6 kcal mol(-1) M(-1) and Delta G(IU)=12.5 kcal mol(-1)). The global and local stability of GFP was probed further by measuring the hydrogen/deuterium (H/D) NMR exchange rates of more than 157 assigned amide protons. Analysis at two different values of pH showed that amide protons within the beta-barrel structure exchange at the EX2 limit, consequently, free energies of exchange could be calculated and compared to those obtained from the denaturation-curve studies providing further support for the three-state model and the existence of a stable intermediate state. Analysis reveals that amide protons in beta-strands 7, 8, 9 and 10 have, on average, higher exchange rates than others in the beta-barrel, suggesting that there is greater flexibility in this region of the protein. Forty or so amide protons were found which do not undergo significant exchange even after several months and these are clustered into a core region encompassing most of the beta-strands, at least at one end of the barrel structure. It is likely that these residues play an important role in stabilizing the structure of the intermediate state. The intermediate state observed in the chemical denaturation studies described here, is similar to that observed at pH 4 in other studies.  相似文献   

16.
Summary Protein phosphatase 2A1 was purified from rat skeletal muscle and used to produce antisera to the three subunits of the holoenzyme. Affinity purified antibodies specific for the subunits of the phosphatase enzyme were found to recognize the type 2A1 and 2A2 phosphatase from rat skeletal muscle, heart, liver, brain and erythrocytes and were used to investigate the effects of diabetes on the levels of this enzyme in liver and heart. Phosphorylase phosphatase assays coupled with immunoblot analysis of fractionated rat liver and heart cytosol from normal and diabetic animals show no apparent differences in the quantity or activity of these enzymes following the induction of alloxan diabetes. When considering these results and the normal physiological concentrations of known effectors of these enzymes, it is likely that protein phosphatase 2A1 and 2A2 are not responsible for the dephosphorylation of phosphorylase a under physiological conditions.  相似文献   

17.
Almost all enzyme-catalysed phosphohydrolytic or phosphoryl transfer reactions proceed through a five-coordinated phosphorus transition state. This is also true for the phospholipase D superfamily of enzymes, where the active site usually is made up of two identical sequence repeats of an HKD motif, positioned around an approximate 2-fold axis, where the histidine and lysine residues are essential for catalysis. An almost complete reaction pathway has been elucidated by a series of experiments where crystals of phospholipase D from Streptomyces sp. strain PMF (PLD(PMF)) were soaked for different times with (i) a soluble poor, short-chained phospholipid substrate and (ii) with a product. The various crystal structures were determined to a resolution of 1.35-1.75 A for the different time-steps. Both substrate and product-structures were determined in order to identify the different reaction states and to examine if the reaction actually terminated on formation of phosphatidic acid (the true product of phospholipase D action) or could proceed even further. The results presented support the theory that the phospholipase D superfamily shares a common reaction mechanism, although different family members have very different substrate preferences and perform different catalytic reactions. Results also show that the reaction proceeds via a phosphohistidine intermediate and provide unambiguous identification of a catalytic water molecule, ideally positioned for apical attack on the phosphorus and consistent with an associative in-line phosphoryl transfer reaction. In one of the experiments an apparent five-coordinate phosphorus transition state is observed.  相似文献   

18.
In the present investigation we studied the extent of variation among barley genotypes (Hordeum vulgare L. cv. Alexis, Canut, Digger, Etna, Peel) in their ability: i) to induce activity of soluble extracellular phosphatase in rhizosphere soil. ii) to withdraw bicarbonate extractable organic phosphorus (NaHCO3-P0). All the genotypes induced 3–4 times higher phosphatase activities in rhizosphere soil as compared to bulk soil. Among the genotypes, there were significant (p>0.01) differences in soluble extracellular and non-soluble phosphatase activities and depletion of NaHCO3-P0 in soil near their root mats. Etna induced highest phosphatase activities and depleted most NaHCO3-P0 from the rhizosphere soil. A high correlation (r=0.79) was found between the activity of soluble extracellular phosphatase and the quantity of NaHCO3-P0 withdrawn from the rhizosphere soil by the barley genotypes.  相似文献   

19.
NMR spectroscopy was used to search for mechanistically significant differences between the thermodynamic and dynamic properties of the 34 kDa (alpha/beta)8-barrel catalytic domain of beta-(1,4)-glycosidase Cex (or CfXyn10A) in its free (apo-CexCD) and trapped glycosyl-enzyme intermediate (2FCb-CexCD) states. The main chain chemical shift perturbations due to the covalent modification of CexCD with the mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-cellobioside are limited to residues within its active site. Thus, consistent with previous crystallographic studies, formation of the glycosyl-enzyme intermediate leads to only localized structural changes. Furthermore, 15N relaxation methods demonstrated that the backbone amide and tryptophan side chains of apo-CexCD are very well ordered on both the nanosecond to picosecond and millisecond to microsecond time scales and that these dynamic features also do not change significantly upon formation of the trapped intermediate. However, covalent modification of CexCD led to the increased protection of many amides and indoles, clustered around the active site of the enzyme, against fluctuations leading to hydrogen exchange. Similarly, thermal denaturation studies demonstrated that 2FCb-CexCD has a significantly higher midpoint unfolding temperature than apo-CexCD. The covalently modified protein also exhibited markedly increased resistance to proteolytic degradation by thermolysin relative to apo-CexCD. Thus, the local and global stability of CexCD increase along its reaction pathway upon formation of the glycosyl-enzyme intermediate, while its structure and fast time scale dynamics remain relatively unperturbed. This may reflect thermodynamically favorable interactions with the relatively rigid active site of Cex necessary to bind, distort, and subsequently hydrolyze glycoside substrates.  相似文献   

20.
The specific activities of the alkaline phosphatase (APase), type I phosphodiesterase and 5'-nucleotidase activities associated with the brush-border plasma membrane of the tapeworm, Hymenolepis diminuta, decrease significantly as the tapeworm grows and matures. Kinetic analyses of the APase activity associated with membrane preparations from whole 6-, 12-, and 18-d-old H diminuta, and individual pieces of 18-d-old H diminuta cut into ten pieces of equal length, failed to demonstrate qualitative changes in the APase activity. Therefore, the decreased specific activities are apparently due to changes in the ratios of enzymatically active to enzymatically inactive membrane proteins (ie, quantitative changes in the membrane proteins) which occur as the tapeworm grows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号