共查询到20条相似文献,搜索用时 0 毫秒
1.
Complete inhibition of transferrin recycling by monensin in K562 cells 总被引:17,自引:0,他引:17
Monensin blocks human transferrin recycling in a dose-dependent and reversible manner in K562 cells, reaching 100% inhibition at a noncytocidal dose of 10(-5) M, whereas transferrin recycling is virtually unaffected by noncytocidal doses of chloroquine. The intracellular pathway of human transferrin in K562 cells, both in the presence and absence of 10(-5) M monensin, was localized by indirect immunofluorescence. Monensin blocks transferrin recycling by causing internalized ligand to accumulate in the perinuclear region of the cell. The effect of 10(-5) M monensin on human transferrin kinetics was quantitatively measured by radioimmunoassay and showed a positive correlation with immunofluorescent studies. Immunoelectron microscopic localization of human transferrin as it cycles through K562 cells reveals the appearance of perinuclear transferrin-positive multivesicular bodies within 3 min of internalization, with subsequent exocytic delivery of the ligand to the cell surface via transferrin-staining vesicles arising from these perinuclear structures within 5 min of internalization. Inhibition of ligand recycling with 10(-5) M monensin causes dilated transferrin-positive multivesicular bodies to accumulate within the cell with no evidence of recycling vesicles. A coordinated interaction between multivesicular bodies and the Golgi apparatus appears to be involved in the recycling of transferrin in K562 cells. Cell-surface-binding sites for transferrin were reduced by 50% with 10(-5) M monensin treatment; however, this effect was not attenuated by 80% protein synthesis inhibition with cycloheximide, supporting the idea that the transferrin receptor is also recycled through the Golgi. 相似文献
2.
Arild C. Rustan Jon
. Nossen Toril Tefre Christian A. Drevon 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1987,930(3)
The effects of chloroquine, verapamil and monensin on secretion of very-low-density lipoproteins (VLDLs) were studied in cultured rat hepatocytes. Maximum inhibition of VLDL-triacylglycerol secretion by 50–90% of control was reached at 200 μM chloroquine, 200 μM verapamil and 5 μM monensin, whereas no effect on cellular triacylglycerol synthesis was observed. The inhibition could be seen within 15 min and was reversible after washout of the drugs. Chloroquine and verapamil inhibited both cellular protein synthesis and protein secretion, whereas monesin reduced protein secretion without any effect on protein synthesis. Control experiments with cycloheximide revealed that intact protein synthesis was not necessary for secretion of VLDL-triacylglycerol during 2 h. Electron micrographs of cells treated with chloroquine, verapamil or monensin showed swollen Golgi cisternae containing VLDL-like particles. By morphometry, a more than 2-fold increase in volume fractions and size indices of Golgi complexes and secondary lysosomes was observed, except that monensin had no significant effect on these parameters of secondary lysosomes. These results suggest that the inhibition of VLDL secretion by chloroquine, verapamil and monensin which takes place in the Golgi complex might be due to disruption of trans-membrane proton gradients. An increase in pH of acidic Golgi vesicles may cause swelling and disturb sorting and membrane flow through this organelle. 相似文献
3.
《Cellular immunology》1985,96(1):71-82
To investigate the role of Ia and immunoglobulin (Ig) molecules of B cells in alloantigen-specific and nominal antigen-specific T-cell activations, the ability of B cells to stimulate Ig allotype-specific T cells was examined. T15-primed B10.BR T cells responded to MOPC 315 (IgA myeloma protein derived from BALB/c) as well as T15 but not to MOPC31c (IgG, myeloma protein). These T cells were stimulated by papain-digested Fc fragment of T15. Thus, T15-primed B10.BR T cells were shown to be specific for Ig allotype of T15, that is, Igh-2a. T15-specific B10.BR T cells were selected by 10-day cultures with T15 in vitro. They responded to BALB.K spleen cells without addition of soluble T15 antigen to the assay culture. Stimulator cells in this mixed lymphocyte reaction (MLR)-like response between T15-specific B10.BR T cells and BALB.K spleen cells were Thy-1−, Ia+ cells and these responses were blocked by anti-Iaκ antibodies. Furthermore, Sephadex G-10-passed BALB.K B cells stimulated the proliferation of T15-specific B10.BR T cells, while they failed to stimulate allogeneic BALB/c spleen cells. The stimulating ability of B cells in this MLR-like response of T15-specific B10.BR T cells was shown to be genetically restricted, namely, both H-2 and non-H-2 genes are involved in the manifestation of the stimulating ability. This system will provide a useful model for studying the role of B-cell surface Ig and Ia molecules in the activation of antigen-specific T cells and alloreactive T cells. 相似文献
4.
An intravenous injection of plasma-derived immunoglobulins is used for the treatment of severe infectious and autoimmune disorders. Despite of its clinical efficacy, precise mechanisms by which intravenous immunoglobulin (IVIg) suppresses proinflammatory immune response are still enigmatic. Here, we provide in vitro evidence that IVIg inhibits homeostatic proliferation of B cells accompanied by induction of their cell aggregation. The IVIg-driven suppression of B cell proliferation and induction of cell aggregation are both unaffected by treatment with a neutralizing antibody against low-affinity Fc receptors for IgG (CD16/FcγRIII and CD32/FcγRII), known cell surface ligands for IVIg. Our observations propose a new immunosuppressive action of IVIg, which directly acts on steady-state B cells to suppress their homeostatic expansion. 相似文献
5.
The effects of the sodium ionophore monensin were examined in the bag cells of Aplysia californica in order to identify the subcellular sites of processing of precursors to their neurosecretory products. Incubation of bag cells in media containing 10 μM monensin led to a marked disruption of the morphology of the Golgi apparatus without affecting that of other organelles. Exposure of bag cells to monensin led to a significant impairment of processing of the largest precursor and of an intermediate protein which gives rise to the immediate precursors to the final secreted products, the egg-laying hormone (ELH) and the acidic peptide (AP). Furthermore, ELH and AP were never produced in the presence of monensin during the time course of these experiments. When axonal transport was allowed to proceed, the contents of bag-cell terminals indicated that the intermediate protein is the first to be packaged in Golgi-derived vesicles, and in monensin-treated cells may be transported without being processed further. In contrast to these results, the protonophore FCCP-impaired precursor and intermediate cleavage equally, indicating that monensin and FCCP have different effects on intracellular transport and precursor processing. These data are interpreted to indicate that the largest ELH-AP precursor is normally processed within the Golgi apparatus, and that the disruption of this organelle induced by monensin produces the impairment seen in its processing. The impairment of cleavage of the intermediate species, and the blockade of production of AP and ELH, are probably the result of monensin-induced impairment of production of proteolytically competent secretory granules by the Golgi apparatus. 相似文献
6.
Summary The distribution of two major immunoreactive forms of somatostatin, somatostatin-14 and somatostatin-34, within the brain, pancreas and intestine of adult lampreys, Petromyzon marinus, was identified using antisera raised against these peptides. Immunostaining of the brain is similar in juveniles and upstream migrants, and somatostatin-14 is the major somatostatin form demonstrated. A few somatostatin-34-containing cells are localized within the olfactory bulbs, thalamus and hypothalamus, but cells immunoreactive to anti-somatostatin-34 in the hypothalamus and thalamus do not co-localize somatostatin-14. Immunostaining of pinealocytes within the pineal pellucida with anti-somatostatin-14 may infer a novel function for this structure. Somatostatin-14 and somatostatin-34 are co-localized within D-cells of the cranial pancreas and caudal pancreas of juveniles and upstream migrants. Numerous somatostatin-34-immunoreactive cells are distributed within the epithelial mucosa of the anterior intestine but not all of these cells cross-react with anti-somatostatin-14. It appears that somatostatin-34 is the major somatostatin in the pancreo-gastrointestinal system of adult lampreys. 相似文献
7.
Our laboratory has established that 2,4-dinitrophenyl-conjugated mouse IgG (DNP-MGG) can specifically suppress the anti-DNP secretion in hybridoma 35-12 and plasmacytoma MOPC-315 cells. To further study the mechanism of this suppression, the effect of DNP-MGG on anti-DNP synthesis and cell proliferation was investigated in these cell lines. Cultured tumor cells (1 × 106) were injected ip into syngeneic mice. These mice were then given either 1 mg MGG or 1 mg DNP-MGG. At different days after injection, tumor cells obtained from these mice were assayed for anti-DNP secretion, anti-DNP synthesis, cell proliferation, and tumor cell size. When the anti-DNP secretion was suppressed by DNP-MGG, the intracellular synthesis of anti-DNP, demonstrated by [3H]leucine incorporation into DNP-binding activity, was also suppressed. Simultaneous assays of [3H]thymidine incorporation demonstrated that proliferation was also suppressed. Tumor cells injected ip into mice normally become small nonsecreting cells and later return to preinjection size and secrete antibody. Those cells whose antibody synthesis and proliferation were suppressed by DNP-MGG remained smaller. 相似文献
8.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells. 相似文献
9.
S Lafont I Millet E Kouassi M Jeannin J P Revillard G Normier L D d'Hinterland 《Microbiology and immunology》1988,32(10):1043-1058
Ribosomal preparations from Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pyogenes, and Streptococcus pneumoniae were investigated with respect to their activating capacity towards murine lymphoid cells. The proliferation of BALB/c spleen cells was induced in a dose-dependent fashion (from 1 to 100 micrograms/ml) by ribosomes of K. pneumoniae, H. influenzae, and S. pyogenes with a peak activity at 48 or 72 hr of culture. The majority of the blast cells induced by these ribosomal preparations were positive for surface-immunoglobulin (S-Ig) and negative for Thy 1.2. Furthermore, K. pneumoniae, H. influenzae, and S. pyogenes ribosomes induced the synthesis of IgM and some IgA. Cell proliferation and induction of IgM production were also demonstrated with the 3 ribosomal preparations using spleen cells from athymic nude (nu+/nu+) mice, Lyb-5-defective CBA/N spleen cells, B cell-enriched and T cell-depleted BALB/c spleen cell suspensions, as well as spleen cells from the Ips gene-deficient C3H/HeJ strain. Cell culture supernatants contained specific anti-ribosome IgM antibodies. Antibodies of other specificities (anti-sheep erythrocytes) were also demonstrated in supernatants from K. pneumoniae-stimulated cultures. Evidence against a possible role of contamination of K. pneumoniae and H. influenzae ribosomes by lipopolysaccharide- or lipid A-associated proteins in this effect is discussed. Ribosomes from S. pneumoniae did not induce 3H-thymidine incorporation nor Ig production. None of the 4 ribosomal preparations was found to stimulate T cell blastogenesis or to induce interleukin-2 production by naive BALB/c spleen cells. Finally, ribosomes from H. influenzae, S. pyogenes, S. pneumoniae but not those of K. pneumoniae stimulated interleukin-1 production by adherent spleen cells, from BALB/c mice. 相似文献
10.
Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. 总被引:17,自引:0,他引:17 下载免费PDF全文
The intracellular sites of biosynthesis of the structural proteins of murine hepatitis virus A59 have been analyzed using cell fractionation techniques. The nucleocapsid protein N is synthesized on free polysomes, whereas the envelope glycoproteins E1 and E2 are translated on the rough endoplasmic reticulum (RER). Glycoprotein E2 present in the RER contains N-glycosidically linked oligosaccharides of the mannose-rich type, supporting the concept that glycosylation of this protein is initiated at the co-translational level. In contrast, O-glycosylation of E1 occurs after transfer of the protein to smooth intracellular membranes. Monensin does not interfere with virus budding from the membranes of the endoplasmic reticulum, but it inhibits virus release and fusion of infected cells. The oligosaccharide side chains of E2 obtained under these conditions are resistant to endoglycosidase H and lack fucose suggesting that transport of this glycoprotein is inhibited between the trans Golgi cisternae and the cell surface. Glycoprotein E1 synthesized in the presence of monensin is completely carbohydrate-free. This observation suggests that the intracellular transport of this glycoprotein is also blocked by monensin. 相似文献
11.
Immunoglobulins are expressed as membrane-bound or secreted forms. Plasma cells produce little or no membrane immunoglobulin but secrete immunoglobulin molecules in large amounts. Immunoglobulin idiotypes of malignant B cells are tumor-specific antigens that may be targeted for immunotherapy. Thus, idiotype vaccination is being evaluated in clinical trials to control residual disease in multiple myeloma and non-Hodgkin's lymphoma. It is traditionally considered that anti-idiotype antibodies are not effective against plasma cell tumors, because the large amounts of immunoglobulin molecules secreted by the tumors block anti-idiotype antibodies, and because the absence of membrane immunoglobulin on the surface of these tumor cells renders them resistant to the effect of anti-idiotype antibodies. While the obstacle of abundant circulating idiotype may be obviated by reducing tumor burden to minimal residual disease, the absence of membrane immunoglobulin has been considered as a limiting factor that prevents tumor eradication by anti-idiotype antibodies. We demonstrate here that murine plasmacytoma cells can produce small amounts of membrane immunoglobulin M (IgM) heavy chains. However, the latter are precursor molecules that do not reach the cell surface. Although membrane-bound IgM is absent, the cells stain positively for surface IgM, reflecting molecules of the secreted form in the process of secretion. In spite of the relatively low levels of secreted immunoglobulin on the cell surface, anti-idiotype antibodies are effective in retardation of tumor growth in vivo. Thus, while there is no doubt that idiotype-specific cell-mediated responses are very important, myeloma patients in complete remission may additionally benefit from idiotype-specific humoral responses. 相似文献
12.
Antigen presentation by human B cells: T cell proliferation induced by Epstein Barr virus B lymphoblastoid cells 总被引:16,自引:0,他引:16
T cell proliferation in response to antigen requires the presence of an antigen-presenting accessory cell. The accessory cell most commonly associated with antigen presentation has been the macrophage (Mo). This study demonstrates that B cells in the form of Epstein Barr virus-transformed B lymphoblasts (EBV-B) are able to present tetanus toxoid (TT) to human T cells and induce proliferation of these cells. T cells freshly isolated from peripheral blood were shown to undergo blast transformation and proliferation in response to TT and irradiated EBV-B cells. Furthermore, TT-reactive T cell blasts were shown to proliferate in the presence of EBV-B cells and TT, but not with other antigens. There was a progressive increase to a plateau in T blast proliferation with increasing numbers of EBV-B cells added to the culture. The concentration of TT required for optimal antigen presentation was similar for EBV-B cells and for Mo. TT-specific cloned T cells also proliferated in response to TT and EBV-B cells and could be continuously grown in culture with TT, interleukin 2-containing supernatant, and EBV-B cells in place of autologous Mo. EBV-B cells pulsed with TT could also act as antigen-presenting cells. The proliferative response of T cell clones to TT in the presence of EBV-B cells was inhibited by antiserum to human p29,34 glycoprotein but not by anti-beta 2-microglobulin. This inhibition was shown to result from interaction with Ia-like determinants on EBV-B cells. These results indicate that B lymphoblastoid cells in man are able, like Mo, to present antigen to T cells in the context of Ia-like determinants. 相似文献
13.
P E Lipsky P A Thompson L J Rosenwasser C A Dinarello 《Journal of immunology (Baltimore, Md. : 1950)》1983,130(6):2708-2714
The role of factors released by monocytes (M phi) in the activation of human B lymphocytes was examined by studying the effect of an antiserum against human leukocytic pyrogen (LP) on mitogen-stimulated B cell proliferation and the generation of immunoglobulin-secreting cells (ISC) by peripheral blood mononuclear cells (PBM). Antiserum against LP was obtained from rabbits immunized with LP-containing human M phi supernatants. The globulin fraction of this antiserum inhibited pokeweed mitogen- (PWM) stimulated B cell proliferation and the generation of ISC in a concentration-dependent manner, with 50% inhibition of responsiveness observed with 10 micrograms/ml. By contrast, PWM-induced T cell [3H]thymidine incorporation was not inhibited by concentrations of anti-LP as great as 2000 micrograms/ml. The F(ab')2 fraction of anti-LP also inhibited the generation of ISC in response to both PWM and formalinized Staphylococcus aureus, but required 50 micrograms/ml to achieve 50% inhibition. Anti-LP inhibited the generation of ISC only if present during the first 24 hr of a 6 to 7-day incubation; later addition was not inhibitory. Inhibition was more marked in cultures partially depleted of M phi than in whole PBM cultures. Whereas absorption of the anti-LP with PBM failed to remove the capacity to inhibit the generation of ISC, anti-LP-mediated inhibition of responsiveness could be reversed by the addition of crude M phi culture supernatants or a variety of highly purified interleukin 1 (IL 1) preparations, but not by T cell supernatants. These results indicate anti-LP inhibits human B cell activation by removing the requisite M phi-derived factor IL 1 and also confirm that IL 1 plays an essential role in B cell proliferation and the generation of ISC in man. 相似文献
14.
M Peters J L Ambrus A Zheleznyak D Walling J H Hoofnagle 《Journal of immunology (Baltimore, Md. : 1950)》1986,137(10):3153-3157
We have investigated the effect of human recombinant interferon-alpha (IFN-alpha) on mitogen-induced immunoglobulin (Ig) production by peripheral blood mononuclear cells from normal individuals. Low concentrations (1 to 100 IU/ml) of IFN-alpha enhanced pokeweed mitogen-stimulated Ig production. In contrast, high concentrations of IFN-alpha (10(5) IU/ml) suppressed pokeweed mitogen-induced Ig production. Irradiation of T cells did not ablate the high dose suppression, indicating that suppression was not due to a radiation-sensitive T cell. Kinetic experiments revealed that IFN-alpha needed to be added to 10 day cultures within the first 72 hr for either enhancement or suppression to be noted. Preincubation of purified B cells with IFN-alpha suppressed Ig production as completely as when unfractionated mononuclear cells were incubated with IFN-alpha. On the other hand, preincubation of T cells or monocytes with IFN-alpha had no effect on subsequent Ig production in reconstituted mononuclear cell cultures. Mitogen-induced proliferation of purified B cells was not affected by IFN-alpha at any concentration, but Ig production by purified B cells stimulated with Staphylococcus aureus Cowan I or anti-mu and B cell differentiation factors responded to IFN-alpha with low concentration enhancement and high concentration suppression. Studies of Ebstein-Barr virus-transformed B cell lines showed that IFN-alpha caused a similar effect on the CESS line as on peripheral blood B cells, with low dose enhancement and high dose suppression of Ig production. Thus one IFN-alpha effect is to modulate Ig production, and this appears to be a direct effect on B cells. Combined with the data in the accompanying paper, the effects of IFN-alpha on B cell function are similar in vivo and in vitro. 相似文献
15.
Effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of liposomes by Kupffer cells in culture 总被引:2,自引:0,他引:2
We investigated the effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of large unilamellar liposomes by rat Kupffer cells in maintenance culture. The phospholipid vesicles were labeled in the lipid moiety with phosphatidyl[14C]choline and contained [3H]inulin or [125I]iodoalbumin as nondegradable and degradable markers of the aqueous vesicle content, respectively. Cytochalasin B and dihydrocytochalasin B, inhibitors of microfilament function, reduced inert inulin label uptake by 75% maximally, but residual uptake was not followed by release of lipid degradation products from the cells. By contrast, colchicine, an inhibitor of microtubule assembly, reduced uptake of liposomal inulin by maximally 55% but could not inhibit release of lipid degradation products from the cells. It is concluded that the cytochalasins partly inhibit uptake but fully prevent the arrival of internalized liposomes in the lysosomal compartment, while the action of colchicine is to slow down the overall process of uptake and subsequent transportation to the lysosomes. Monensin reduced inulin uptake to an extent similar to that found with colchicine, but reversibly blocked degradation of liposomal lipid and encapsulated protein. The kinetics of degradation of liposomal constituents suggests that residual uptake in the presence of monensin represents accumulation in an intracellular compartment. Trifluoperazine did not affect binding, internalization or degradation of encapsulated protein at low concentration (6 microM), but completely inhibited release of liposomal lipid degradation products under these conditions. At intermediate concentration (14 microM), the drug also reduced the internalization, while a high concentration (22 microM) was required to inhibit protein degradation as well. We conclude that trifluoperazine has multiple sites of action in the uptake and processing of liposomal constituents by Kupffer cells. 相似文献
16.
A multitude of factors has been described that positively and negatively regulate B cell proliferation. A model system for the study of negative control of B cell function is provided by mice bearing plasmacytomas (PC-mice). In PC-mice, the primary immune response, as measured by development of antibody-forming cells (AFC), is severely suppressed. The present report specifically identifies a block in B cell proliferation as the apparent cause of this reduction in AFC production. Thus, the proliferative response of B cells from the spleens of PC-mice (PC-spleens) was significantly impaired when stimulated with four different B cell mitogens (lipopolysaccharide, Salmonella typhimurium mitogen, anti-mu conjugated to Sepharose, and 8-mercaptoguanosine). Nevertheless, the mitogen-responsiveness of these B cells was recovered when they were segregated by various methods from macrophages. These data suggest that the proliferative ability of the B cells in PC-spleens is inherently normal. In concordance with this conclusion, it was shown that suppressor cells from PC-spleens can block the proliferation of normal B cells derived from nontumor-bearing mice. This inhibition does not require direct cell contact and is mediated via soluble factors. The relevance of these results to previous studies of PC-induced immunosuppression and to the control of normal B cell proliferation is discussed. 相似文献
17.
The intracellular pathway for secretion of thymulin, a thymic hormone, was studied in primary cultures of human thymic epithelial cells by experimentally blocking the movement of secretory vesicles within these cells. These cultures were subjected to cytoskeleton inhibitors, such as colchicine and/or cytochalasin B, that block the directed movement of secretory vesicles, or to monensin, an ionophore that specifically perturbs the traffic of Golgi-derived vesicles. Both cytoskeleton inhibitors partially prevented thymulin secretion into the culture supernatants, and their effects were dose-dependent. Moreover, the percentage of thymulin-containing cells (evaluated by immunofluorescence with a zinc-specific anti-thymulin monoclonal antibody), as well as the fluorescence intensity within these cells, was significantly higher than observed in control cultures, suggesting that the hormone was accumulated in the cytoplasm, thus facilitating its detection. Similar results were obtained with monensin. These results, together with the recent identification of high molecular weight proteins reacting with anti-thymulin antibodies, suggest that thymulin is secreted via the following intracellular pathway: a precursor is synthesized at the level of the granular endoplasmic reticulum; it migrates to the Golgi complex, from which it is released within hormone-containing vesicles; the vesicles incorporate zinc, move towards the cell membrane, and eventually fuse with it. This sequence of events characterizes the classical phenomenon of exocytosis. 相似文献
18.
In this study, we characterized and compared the ligand-independent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes treated with monensin, chloroquine, microtubule depolymerizing agents, or NaN3 and NaF at 37 degrees C. Freshly isolated hepatocytes exhibit predominately one subset of surface Gal receptors, termed State 1 receptors (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). During equilibration at 37 degrees C, these cells also express a second subset of Gal receptors at the surface, termed State 2 receptors, and routinely double their total surface Gal receptor activity. Following equilibration at 37 degrees C and then inhibitor treatment, hepatocytes bound 40-60% less 125I-asialoorosomucoid (ASOR) at 4 degrees C than did untreated cells. Treated cells maintained a basal nonmodulated level of surface receptor activity regardless of temperature, perturbant concentration, or incubation time. Loss of surface Gal receptor activity on cells treated with multiple inhibitors simultaneously or sequentially was not additive. Thus, all treatments affected the same subpopulation of surface Gal receptors. None of these inhibitors decreased surface State 1 Gal receptor activity, but all prevented the normal appearance of State 2 Gal receptors on freshly isolated cells during incubation at 37 degrees C. The endocytic capability of residual surface State 1 Gal receptors on inhibitor-treated cells varied depending on the inhibitor. Hepatocytes treated first at 24 degrees C or with colchicine at 37 degrees C internalized greater than 85% of surface-bound 125I-ASOR. In contrast, monensin- or chloroquine-treated cells internalized approximately 50% of surface-bound 125I-ASOR. Azide-treated cells internalized less than 20% of surface-bound 125I-ASOR. We conclude that only surface State 2 Gal receptor activity is sensitive to these various perturbants. State 1 Gal receptor activity is not modulated. These data are consistent with the conclusion that only State 2 Gal receptors constitutively recycle. 相似文献
19.
20.
Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus 总被引:4,自引:8,他引:4 下载免费PDF全文
The effects of cytochalasin B and chloroquine on the process of endocytosis of Sindbis virus particles and polystyrene spheres were determined by electron microscopy. The effects of these agents on the process of infection (attachment, penetration, and uncoating) of BHK-21 cells by Sindbis virus and vesicular stomatitis virus were also determined. Cytochalasin B completely blocked ingestion of Sindbis virus particles or latex spheres by BHK cells but had no effect on the ability of Sindbis virus or vesicular stomatitis virus to infect or replicate in BHK cells. Chloroquine did not inhibit the ingestion of either latex spheres or virus particles but greatly reduced the yields of virus produced. These data suggest that endocytosis is not essential for the infection of cultured cells by Sindbis virus or vesicular stomatitis virus. 相似文献