首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unloading of skeletal muscles by hindlimb unweighting is known to induce muscle atrophy and a shift toward faster contractile properties associated with an increase in the expression of fast contractile proteins, particularly in slow soleus muscles. Contractile properties suggest that slow soleus muscles acquire SR properties close to those of a faster one. We studied the expression and properties of the sarcoplasmic reticulum calcium release (RyR) channels in soleus and gastrocnemius muscles of rats submitted to hindlimb unloading (HU). An increase in RyR1 and a slight decrease in RyR3 expression was detected in atrophied soleus muscles only after 4 weeks of HU. No variation appeared in fast muscles. [(3)H]Ryanodine binding experiments showed that HU neither increased the affinity of the receptors for [(3)H]ryanodine nor changed the caffeine sensitivity of [(3)H]ryanodine binding. Our results suggested that not only RyR1 but also RyR3 expression can be regulated by muscle activity and innervation in soleus muscle. The changes in the RyR expression in slow fibers suggested a transformation of the SR from a slow to a fast phenotype.  相似文献   

2.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

3.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

4.
The compositions of sarcoplasmic reticulum (SR) membranes from rabbit caudofemoralis, tibialus, and soleus muscles (fast, mixed, and slow twitch, respectively) were analyzed. Compared to caudofemoralis (fast twitch) SR, soleus (slow twitch) SR contained a significantly greater percentage of cholesterol, phosphatidylinositol, and sphingomyelin and a lesser percentage of phosphatidylcholine. Correlations between properties reported for the SR isolated from different muscle types and our analyses of the compositions are discussed. We suggest that the greater cholesterol content and the greater sphingomyelin to phosphatidylcholine ratio present in soleus SR contribute to decreased bilayer fluidity and, hence, decreased Ca2+-ATPase activity.  相似文献   

5.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Increases in contraction-stimulated glucose transport in fast-twitch rat epitrochlearis muscle are mediated by AMPK- and Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent signaling pathways. However, recent studies provide evidence suggesting that contraction-stimulated glucose transport in slow-twitch skeletal muscle is mediated through an AMPK-independent pathway. The purpose of the present study was to test the hypothesis that contraction-stimulated glucose transport in rat slow-twitch soleus muscle is mediated by an AMPK-independent/Ca2+-dependent pathway. Caffeine, a sarcoplasmic reticulum (SR) Ca2+-releasing agent, at a concentration that does not cause muscle contractions or decreases in high-energy phosphates, led to an approximately 2-fold increase in 2-deoxyglucose (2-DG) uptake in isolated split soleus muscles. This increase in glucose transport was prevented by the SR calcium channel blocker dantrolene and the CAMK inhibitor KN93. Conversely, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an AMPK activator, had no effect on 2-DG uptake in isolated split soleus muscles yet resulted in an approximately 2-fold increase in the phosphorylation of AMPK and its downstream substrate acetyl-CoA carboxylase. The hypoxia-induced increase in 2-DG uptake was prevented by dantrolene and KN93, whereas hypoxia-stimulated phosphorylation of AMPK was unaltered by these agents. Tetanic muscle contractions resulted in an approximately 3.5-fold increase in 2-DG uptake that was prevented by KN93, which did not prevent AMPK phosphorylation. Taken in concert, our results provide evidence that hypoxia- and contraction-stimulated glucose transport is mediated entirely through a Ca2+-dependent mechanism in rat slow-twitch muscle.  相似文献   

7.
《Cell calcium》1996,20(1):73-82
We have presented an assay for measuring the rate of sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+ release in skeletal muscle homogenates using the fluorescent Ca2+ probe Fura-2. Using this assay, we investigated the effects of an elevated temperature (40°C) and lowered pH (6.8), two factors proposed to be involved in skeletal muscle fatigue, on SR Ca2+ uptake. The EDL muscle was found to have a higher rate of Ca2+ uptake than the soleus (34%). Exposure of the muscles to a raised temperature, but not a reduced pH, resulted in a reduction in the rate of Ca2+ uptake in both the EDL and soleus homogenates. This uptake process was blocked by cyclopiazonic acid (CPA) a specific inhibitor of the major transport protein of the sarcoplasmic reticulum, the Ca2+-ATPase. Calcium release was induced using AgNO3 after loading of the vesicles during the uptake process. It was found that AgNO3 was only effective in producing Ca2+ release in the EDL muscles. The soleus muscles did not release Ca2+ under varying [Mg2+] or with Hg2+ substitution for Ag+, suggesting that fast- and slow-twitch muscle fibres require different conditions for maximum Ca2+-release, or that different isoforms of the Ca2+ release channels are present in the different fibres.  相似文献   

8.
The aim of this study was to quantify the degenerative and regenerative changes in rat soleus muscle resulting from 3-week hindlimb suspension at 45° tilt (HS group, n = 8) and 4-week normal cage recovery (HS-R group, n = 7). Degenerative changes were quantified by microscope examination of muscle cross sections, and the myosin heavy chain (MHC) composition of soleus muscles was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At the end of 3-week hindlimb suspension, histological signs of muscle degenerative changes were detected in soleus muscles. There was a significant variability in the percentage of fibres referred to as degenerating (%dg) in individual animals in the HS group [%dg = 8.41 (SEM 0.5)%, range 4.66%–14.08%]. Moreover, %dg varied significantly along the length of the soleus muscle. The percentage of fibres with internal nuclei was less than %dg in HS-soleus muscles [4.12 (SEM 0.3)%, range 1.24%–8.86%]. In 4-week recovery rats, the greater part of the fibres that were not referred to as normal, retained central nuclei [15.8 (SEM 2.2)%, range 6.2%–21.1%]. A significant increase in the slow isoform of MHC was recorded in the HS-R rats, compared to muscles from age-matched rats (P < 0.01). These results would suggest that a cycle of myofibre degeneration-regeneration occurred during HS and passive recovery, and that the increased accumulation of slow MHC observed in soleus muscles after recovery from HS could be related to the prevalence of newly formed fibres. Accepted: 14 October 1996  相似文献   

9.
The purpose of this study was to determine the effects of 2 Ca2+ channel blockers, verapamil and diltiazem, on calcium loading (active Ca2+ uptake) and the following Ca2+ release induced by silver ion (Ag+) and Ca2+ from the membrane of heavy sarcoplasmic reticulum (SR) of chicken skeletal muscle. A fluorescent probe technique was employed to determine the calcium movement through the SR. Pretreatment of the medium with diltiazem and verapamil resulted in a significant decrease in the active Ca2+ uptake, with IC50 of about 290 micromol/L for verapamil and 260 micromol/L for diltiazem. Inhibition of Ca2+ uptake was not due to the development of a substantial drug-dependent leak of Ca2+ from the SR. It might, in part, have been mediated by a direct inhibitory effect of these drugs on the Ca2+ ATPase activity of the SR Ca2+ pump. We confirmed that Ca2+ channel blockers, administered after SR Ca2+ loading and before induction of Ca2+ release, caused a dose-dependent inhibition of both Ca2+- and Ag+-induced Ca2+ release rate. Moreover, if Ca2+ channel blockers were administered prior to SR Ca2+ loading, in spite of Ca2+ uptake inhibition the same reduction in Ca2+- and Ag+-induced Ca2+ release rate was seen. We showed that the inhibition of Ag+-induced Ca2+ release by L-channel blockers is more sensitive than Ca2+-induced Ca2+ release inhibition, so the IC50 for Ag+- and Ca2+-induced Ca2+ release was about 100 and 310 micromol/L for verapamil and 79 and 330 micromol/L for diltiazem, respectively. Our results support the evidence that Ca2+ channel blockers affect muscle microsome of chicken skeletal muscle by 2 independent mechanisms: first, reduction of Ca2+ uptake rate and Ca2+-ATPase activity inhibition, and second, inhibition of both Ag+- and Ca2+-induced Ca2+ release by Ca2+ release channels. These findings confirm the direct effect of Ca2+ channel blockers on calcium release channels. Our results suggest that even if the SR is incompletely preloaded with Ca2+ because of inhibition of Ca2+ uptake by verapamil and diltiazem, no impairment in Ca2+ release occurs.  相似文献   

10.
We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2+ ionophore A23187. Stimulation at 1 Hz for 120-240 min caused an increase in 45Ca uptake that was closely correlated to LDH release. This LDH release increased markedly with temperature. After 120 min of stimulation at 1 Hz, resting 45Ca uptake was increased 5.6-fold compared with unstimulated muscles. This was associated with an eightfold increase in LDH release, and this effect was halved by lowering extracellular Ca2+ concentration ([Ca2+]o). The poststimulatory increase in resting 45Ca uptake persisted for at least 120 min. An acute increase in sarcolemma leakiness induced by electroporation markedly increased 45Ca uptake and LDH leakage. Both effects depended on [Ca2+]o. A23187 increased 45Ca uptake. Concomitantly, LDH leakage increased 18-fold within 30 min, and this effect was abolished by omitting Ca2+ from the buffer. We conclude that increased Ca2+ influx may be an important cause of cell membrane damage that arises during and after exercise or electrical shocks. Because membrane damage allows further influx of Ca2+, this results in positive feedback that may further increase membrane degeneration.  相似文献   

11.
S100A1, a Ca2+-binding protein of the EF-hand type, is most highly expressed in striated muscle and has previously been shown to interact with the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR1) isoform. However, it was unclear whether S100A1/RyR1 interaction could modulate SR Ca2+ handling and contractile properties in skeletal muscle fibers. Since S100A1 protein is differentially expressed in fast- and slow-twitch skeletal muscle, we used saponin-skinned murine Musculus extensor digitorum longus (EDL) and Musculus soleus (Soleus) fibers to assess the impact of S100A1 protein on SR Ca2+ release and isometric twitch force in functionally intact permeabilized muscle fibers. S100A1 equally enhanced caffeine-induced SR Ca2+ release and Ca2+-induced isometric force transients in both muscle preparations in a dose-dependent manner. Introducing a synthetic S100A1 peptide model (devoid of EF-hand Ca2+-binding sites) allowed identification of the S100A1 C terminus (amino acids 75-94) and hinge region (amino acids 42-54) to differentially enhance SR Ca2+ release with a nearly 3-fold higher activity of the C terminus. These effects were exclusively based on enhanced SR Ca2+ release as S100A1 influenced neither SR Ca2+ uptake nor myofilament Ca2+ sensitivity/cooperativity in our experimental setting. In conclusion, our study shows for the first time that S100A1 augments contractile performance both of fast- and slow-twitch skeletal muscle fibers based on enhanced SR Ca2+ efflux at least mediated by the C terminus of S100A1 protein. Thus, our data suggest that S100A1 may serve as an endogenous enhancer of SR Ca2+ release and might therefore be of physiological relevance in the process of excitation-contraction coupling in skeletal muscle.  相似文献   

12.
Mitsugumin 29 (MG29) is a transmembrane protein that is normally found in the triad junction of skeletal muscle. Our previous studies have shown that targeted deletion of rag29 from the skeletal muscle resulted in abnormality of the triad junction structure, and also increased susceptibility to muscle fatigue. To elucidate the basis of these effects, we investigated the properties of Ca^2 uptake and -release in toxin-skinned Extensor Digitorium Longus (EDL) muscle fibers from control and rag29 knockout mice. Compared with the control muscle, submaximal Ca^2 uptake into the sarcoplasmic reticulum (SR) was slower and the storage of Ca^2 inside the SR was less in the mutant muscle, due to increased leakage process of Ca^2 movement across the SR. The leakage pathway is associated with the increased sensitivity of Ca^2 /caffeine -induced Ca^2 release to myoplasmic Ca^2 . Therefore, the increased fatigability of mutant EDL muscles can result from a combination of a slowing of Ca^2 uptake, modification of Ca^2 -induced Ca^2 release (CICR), and a reduction in total SR Ca^2 content.  相似文献   

13.
alpha B-Crystallin specifically decreases in atrophied rat soleus muscle with hindlimb suspension (HS). alpha B-Crystallin cDNA was cloned from rat heart cDNA library using oligonucleotide probe, and its complete coding and partial non-coding regions were sequenced. Northern blot analysis revealed that alpha B-crystallin mRNA in slow muscle decreases at 36 hour after HS but recovered at 24 hour after HS stopped. Denervation decreased the expression of alpha B-crystallin mRNA in slow muscle but increased it in fast muscles, which hardly expressed in normal condition. Passive tension increased the expression of alpha B-crystallin mRNA in both muscle types. Based upon these Northern blot analysis of alpha B-crystallin, nerve innervation and external load on muscle are essential regulatory factors on the expression of the mRNA of alpha B-crystallin in rat skeletal muscle.  相似文献   

14.
Ca2+ signaling in skeletal and cardiac muscles is a bi-directional process that involves cross-talk between signaling molecules in the sarcolemmal membrane and Ca2+ release machinery in the intracellular organelles. Maintenance of a junctional membrane structure between the sarcolemmal membrane and the sarcoplasmic reticulum (SR) provides a framework for the conversion of action potential arrived at the sarcolemma into release of Ca2+ from the SR, leading to activation of a variety of physiological processes. Activity-dependent changes in Ca2+ storage inside the SR provides a retrograde signal for the activation of store-operated Ca2+ channel (SOC) on the sarcolemmal membrane, which plays important roles in the maintenance of Ca2+ homeostasis in physiology and pathophysiology. Research progress during the last 30 years had advanced our understanding of the cellular and molecular mechanisms for the control of Ca2+ signaling in muscle and cardiovascular physiology. Here we summarize the functions of three key molecules that are located in the junctional membrane complex of skeletal and cardiac muscle cells: junctophilin as a "glue" that physiologically links the SR membrane to the sarcolemmal membrane for formation of the junctional membrane framework, mitsugumin29 as a muscle-specific synaptophysin family protein that contributes to maintain the coordinated Ca2+ signaling in skeletal muscle, and TRIC as a novel cation-selective channel located on the SR membrane that provides counter-ion current during the rapid process of Ca2+ release from the SR.  相似文献   

15.
The Ca2+ uptake mechanism of sarcoplasmic reticulum (SR) was comparatively examined in fast-twitch and slow-twitch muscles. The competition of Mg2+ and Ca2+ at the binding sites is important in the function of the Mg2+-activated Ca2+-ATPase of the SR. The best ratio of divalent cations for Ca2+ uptake is not the same in the two kinds of muscle. The formation of the phosphorylated intermediate in more dependent on changes in the concentrations of the two divalent cations in the SR membrane of the fast-twitch than in that of the slow-twitch muscle. The requirement for Mg2+ to an efficient function of the transport ATPase and Ca2+ uptake of SR is greater in the latter than in the former.  相似文献   

16.
1. One week after denervation several biochemical characteristics of the fast extensor digitorum longus and slow soleus muscles from adult rats were investigated and compared with the characteristics of the corresponding unoperated contralateral muscles. 2. After these short periods of denervation-induced atrophy, the isolated myosins showed unchanged ATPase (adenosine triphosphatase) activities, but there was the expected difference between fast and slow muscle. 3. The specific activities of several soluble enzymes and their characteristic patterns were found to be only slightly modified in both the extensor and soleus muscles after denervation, as were most of the activities measured in the isolated mitochondria. 4. The most significant modifications were in the isolated sarcoplasmic reticulum, and appeared to be specific to either slow or fast muscle. 5. Denervation of slow muscle led to a marked increase of Ca(2+)-transport rates, and of the specific activity of the Mg(2+)-activated K(+)-modulated Ca(2+)-stimulated ATPase, together with changes in the polyacrylamide-electrophoretic profiles of the microsomal membrane protein. Transformation of these several properties of slow muscle sarcoplasmic reticulum to those of fast muscle sarcoplasmic reticulum was further substantiated by electron-microscopic analysis after negative staining. Control experiments with tenotomized soleus muscle gave negative results. 6. The isolated sarcoplasmic reticulum from fast muscle showed a slight diminution of ATPase-linked Ca(2+)-transport activity and a selective increase of rotenone-insensitive NADH-cytochrome c reductase activity, in addition to a greater emphasis on slow-type electrophoretic components of the structural membrane protein. 7. The significance of these results in relation to specific differentiating influences from motor nerves is discussed.  相似文献   

17.
To investigate the hypothesis that ischemia and reperfusion would impair sarcoplasmic reticulum (SR) Ca(2+) regulation in skeletal muscle, Sprague-Dawley rats (n = 20) weighing 290 +/- 3.5 g were randomly assigned to either a control control (CC) group, in which only the effects of anesthetization were studied, or to a group in which the muscles in one hindlimb were made ischemic for 4 h and allowed to recover for 1 h (I). The nonischemic, contralateral muscles served as control (C). Measurements of Ca(2+)-ATPase properties in homogenates and SR vesicles, in mixed gastrocnemius and tibialis anterior muscles, indicated no differences between groups on maximal activity, the Hill coefficient, and Ca(50), defined as the Ca(2+) concentration needed to elicit 50% of maximal activity. In homogenates, Ca(2+) uptake was lower (P < 0.05) by 20-25%, measured at 0.5 and 1.0 microM of free Ca(2+) ([Ca(2+)](f)) in C compared with CC. In SR vesicles, Ca(2+) uptake was lower (P < 0.05) by 30-38% in I compared with CC at [Ca(2+)](f) between 0.5 and 1.5 microM. Silver nitrate induced Ca(2+) release, assessed during both the initial, early rapid (phase 1), and slower, prolonged late (phase 2) phases, in homogenates and SR vesicles, indicated a higher (P < 0.05) release only in phase 1 in SR vesicles in I compared with CC. These results indicate that the alterations in SR Ca(2+) regulation, previously observed after prolonged ischemia by our group, are reversed within 1 h of reperfusion. However, the lower Ca(2+) uptake observed in long-term, nonischemic homogenates suggests that altered regulation may occur in the absence of ischemia.  相似文献   

18.
Although apoptosis has been demonstrated in soleus during hindlimb suspension (HS), it is not known whether apoptosis is also involved in the loss of muscles dominated by mixed fibers. Therefore, we examined the apoptotic responses in gastrocnemius muscles of young adult and aged Fischer 344 x Brown Norway rats after 14 days of HS. The medial gastrocnemius muscle wet weight significantly decreased by 30 and 32%, and muscle wet weight normalized to the animal body weight decreased by 11 and 15% in young adult and aged animals, respectively, after HS. The extent of apoptotic DNA fragmentation increased by 119 and 61% in suspended muscles from young and aged rats, respectively. Bax mRNA increased by 73% in young muscles after HS. Bax and Bcl-2 protein levels were greater in suspended muscles relative to control muscles in both age groups. The level of cytosolic mitochondria-housed apoptotic factor cytochrome c was significantly increased in the mitochondria-free cytosol of suspended muscles from young and aged rats. In contrast, the release/accumulation of AIF, a caspase-independent apoptogenic factor, was exclusively expressed in the suspended muscles from aged rats. Our data also show that aging favors the proapoptotic signaling in skeletal muscle by altering the contents of Bax, Bcl-2, Apaf-1, AIF, caspases, XIAP, Smac/DIABLO, and cytochrome c. Furthermore, these results indicate that apoptosis occurs not only in slow-twitch soleus muscle but also in the mixed-fiber (predominately fast fibered) gastrocnemius muscle. Our data are consistent with the hypothesis that apoptotic signaling differs in young adult and aged gastrocnemius muscles during HS.  相似文献   

19.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

20.
Fast (extensor digitorum longus) and slow (soleus) rat skeletal muscles served as the source for isolation and biochemical comparison of two distinct surface membrane fractions with properties of the sarcolemma and transverse tubular system. Enriched sarcolemmal membrane from soleus demonstrated a lighter density after sucrose density centrifugation. Sialic acid content was 1.5-fold higher in soleus (62 nmol/mg) than extensor (40 nmol/mg). The specific activity of (Na+ + K+ + Mg2+)-ATPase was similar (1.40 and 1.65 micronmol Pi/mg per 5 min) with the soleus enzyme displaying a (1) greater resistance to inhibition by ouabain, and (2) broader ionic ratio (Na+/K+) requirement than extensor enzyme. The polypeptide and phospholipid composition showed no major differences between the two muscle types. The second surface membrane fraction, tentatively identified as transverse tubule, differed in membrane composition. The major polypeptide of extensor was of 95 000 molecular weight whereas for soleus a Mr=28 000 species was dominant. Total phospholipid content of soleus was 1.5-fold greater than extensor due mostly to increased levels of phosphatidylcholine and phosphatidylethanolamine. Endogenous membrane protein kinase for the 28 000 molecular weight polypeptide was found exclusively in this membrane. The reaction conditions were identical for extensor and soleus since both required divalent cations (Ca2+ and Mg2+) and neither was affected by cyclic AMP. Soleus showed a 2-fold higher capacity for phosphate incorporation than extensor. These studies show that surface membrane fractions derived from fast and slow muscles differ in terms of functional and compositional properties. These differences are specific not only for the surface membrane but for the muscle type and may relate to the known physiological differences observed between fast and slow mammalian muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号