首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently it was reported that methanogens of the genus Methanobrevibacter exhibit catalase activity. This was surprising, since Methanobrevibacter species belong to the order Methanobacteriales, which are known not to contain cytochromes and to lack the ability to synthesize heme. We report here that Methanobrevibacter arboriphilus strains AZ and DH1 contained catalase activity only when the growth medium was supplemented with hemin. The heme catalase was purified and characterized, and the encoding gene was cloned. The amino acid sequence of the catalase from the methanogens is most similar to that of Methanosarcina barkeri.  相似文献   

2.
Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed the SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source.  相似文献   

3.
Brioukhanov  A. L.  Thauer  R.K.  Netrusov  A.I. 《Microbiology》2002,71(3):281-285
Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source.  相似文献   

4.
Methanogenic archaeon Methanobrevibacter arboriphilus (strains AZ and DH1), which is a strict anaerobic microorganism not able to synthesize heme, possessed a very high catalase activity in the presence of 20-50?μM hemin in a growth medium. We investigated the effect of various oxidative stresses (hydrogen peroxide and oxygenation) on M. arboriphilus cells grown on the standard nutrient medium supplemented with 0.1?% yeast extract, and on the same medium supplemented with hemin. It was demonstrated that 30?μM hemin had a very significant positive effect on the resistance of M. arboriphilus strains to H(2)O(2) and O(2) stresses because of 30- to 40-fold increase of heme catalase activity. Thus, hydrogen peroxide (0.6-1.2?mM) or oxygen (3-5?%) had a strong negative impact on low-catalase cultures grown in the hemin-free standard medium, whereas the presence of 30?μM hemin in the medium results in a high yield of biomass even under conditions of four times stronger H(2)O(2) and two times stronger O(2) stresses. The intracellular catalase activity reached a high level in 30-60?min after hemin was added to the nutrient medium, but the activity already increased about 5-7-fold in 6?min after hemin addition. Our experimental data suggest that exogenous hemin provides an effective antioxidative defense in representatives of the genus Methanobrevibacter, specially playing an important role in the puromycin-insensitive formation of the active heme-containing catalase from presynthesized apoenzyme and heme.  相似文献   

5.
Autotrophic methanogens reduce CO2 to CO and assimilate CO in a carbonylation reaction. Heterotrophic species were found not to form CO and/or to incorporate CO into cell matiral. The absence of CO formation correlated with the absence of carbon monoxide dehydrogenase activity. The heterotrophic Methanobrevibacter ruminantium, Methanobrevibacter smithii, Methanococcus voltae and Methanospirillum hungatei (strain GP 1) were investigated.  相似文献   

6.
The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.  相似文献   

7.
In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H(2)-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe.  相似文献   

8.
The diversity of protozoan-associated methanogens in cattle was investigated using five universal archaeal small-subunit (SSU) rRNA gene primer sets. Methanobrevibacter spp. and rumen cluster C (distantly related to Thermoplasma spp.) were predominant. Significant differences in species composition among libraries indicate that some primers used previously to characterize rumen methanogens exhibit biased amplification.  相似文献   

9.
A temporal temperature gradient gel electrophoresis (TTGE) method was developed to determine the diversity of methanogen populations in the rumen. Tests with amplicons from genomic DNA from 12 cultured methanogens showed single bands for all strains, with only two showing apparently comigrating bands. Fingerprints of methanogen populations were analyzed from DNA extracted from rumen contents from two cattle and four sheep grazing pasture. For one sheep, dilution cultures selective for methanogens were grown and the culturable methanogens in each successive dilution examined by TTGE. A total of 66 methanogen sequences were retrieved from bands in fingerprints and analyzed to reveal the presence of methanogens belonging to the Methanobacteriales, the Methanosarcinales, and to an uncultured archaeal lineage. Twenty-four sequences were most similar to Methanobrevibacter ruminantium, five to Methanobrevibacter smithii, four to Methanosphaera stadtmanae, and for three, the nearest match was Methanimicrococcus blatticola. The remaining 30 sequences did not cluster with sequences from cultured archaea, but when combined with published novel sequences from clone libraries formed a monophyletic lineage within the Euryarchaeota, which contained two previously unrecognized clusters. The TTGE bands from this lineage showed that the uncultured methanogens had significant population densities in each of the six rumen samples examined. In cultures of dilutions from one rumen sample, TTGE examination revealed these methanogens at a level of at least 105 g−1. Band intensities from low-dilution cultures indicated that these methanogens were present at similar densities to Methanobrevibacter ruminantium-like methanogens, the sole culturable methanogens in high dilutions (106–10−10 g−1). It is suggested that the uncultured methanogens together with Methanobrevibacter spp. may be the predominant methanogens in the rumen. The TTGE method presented in this article provides a new opportunity for characterizing methanogen populations in the rumen microbial ecosystem.  相似文献   

10.
Development of inhibitors and vaccines that mitigate rumen-derived methane by targeting methanogens relies on knowledge of the methanogens present. We investigated the composition of archaeal communities in the rumens of farmed sheep (Ovis aries), cattle (Bos taurus) and red deer (Cervus elaphus) using denaturing gradient gel electrophoresis (DGGE) to generate fingerprints of archaeal 16S rRNA genes. The total archaeal communities were relatively constant across species and diets, and were less variable and less diverse than bacterial communities. There were diet- and ruminant-species-based differences in archaeal community structure, but the same dominant archaea were present in all rumens. These were members of three coherent clades: species related to Methanobrevibacter ruminantium and Methanobrevibacter olleyae; species related to Methanobrevibacter gottschalkii, Methanobrevibacter thaueri and Methanobrevibacter millerae; and species of the genus Methanosphaera. Members of an archaeal group of unknown physiology, designated rumen cluster C (RCC), were also present. RCC-specific DGGE, clone library analysis and quantitative real-time PCR showed that their 16S rRNA gene sequences were very diverse and made up an average of 26.5% of the total archaea. RCC sequences were not readily detected in the DGGE patterns of total archaeal 16S rRNA genes because no single sequence type was abundant enough to form dominant bands.  相似文献   

11.
The aim of the present study was to decipher the diversity of methanogens in rumen of Murrah buffaloes so that effective strategies can be made in order to mitigate methane emission from these methanogens. In the present study diversity of rumen methanogens in Murrah buffaloes (Bubalus bubalis) from North India was evaluated by using mcr-A gene library obtained from the pooled PCR product from four animals and by using MEGA4 software. A total of 104 clones were examined, revealing 26 different mcr-A gene sequences or phylotypes. Of the 26 phylotypes, 16 (64 of 104 clones) were less than 97% similar to any of the cultured strain of methanogens. Seven clone sequences were clustered with Methanomicrobium mobile and three clone sequences were clustered with Methanobrevibacter gottschalkii during the phylogenetic analysis. Uncultured group of methanogens comes out to be the major component of the methanogens community structure in Murrah buffaloes. Methanomicrobium phylotype comes out to be major phylotype among cultured methanogens followed by Methanobrevibacter phylotype. These results help in making effective strategies to check the growth of dominant communities in the rumen of this animal which in turn help in the reduction of methane emission in the environment and ultimately helps us in fighting with the problem of global warming.  相似文献   

12.
In growing cultures of Methanobrevibacter arboriphilicus (Methanobrevibacter arboriphilus), the synthesis of active carbon monoxide dehydrogenase required nickel. The 21-fold-purified enzyme from 63Ni-labeled cells of M. arboriphilicus comigrated with 63Ni during gel filtration. These results provide evidence that the carbon monoxide dehydrogenase of methanogens is a nickel protein.  相似文献   

13.
AIMS: To assess the diversity of ruminal methanogens in a grazing cow, and develop PCR primers targeting the predominant methanogens. METHODS AND RESULTS: DNA was extracted from rumen contents collected from a cow grazing pasture. Archaeal 16S rRNA genes were amplified by PCR using two pairs of archaea-specific primers, and clone libraries prepared. Selected clones were sequenced. Phylogenetic analysis revealed that for one primer pair, most sequences clustered with Methanobrevibacter spp. whereas with the other primer pair most clustered with Methanosphaera stadtmanae. One sequence belonged to the Crenarcheota. PCR primers were designed to detect Msp. stadtmanae and differentiate between Mbb. ruminantium and Mbb. smithii and successfully tested. CONCLUSIONS: The ruminal methanogens included Mbb. ruminantium, Mbb. smithii, Mbb. thaueri and methanogens similar to Msp.stadtmanae. The study showed that apparent methanogen diversity can be affected by selectivity from the archaea-specific primers used to create clone libraries. SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed a greater diversity of ruminal methanogens in grazing cows than previously recognized. It also shows the need for care in interpreting methanogen diversity using PCR-based analyses. The new PCR primers will enable more information to be obtained on Msp. stadtmanae and Methanobrevibacter spp. in the rumen.  相似文献   

14.
The predicted 16S riboprint patterns of 10 restriction endonucleases for 26 diverse methanogens were compared to actual patterns produced on agarose gels. The observed patterns corroborated the expected riboprints. Our analyses confirmed that the endonuclease HaeIII gave the best results generating 15 different riboprint sets. Six of these 15 riboprints represented more than one strain. Of these, three riboprint sets were further differentiated: Methanomicrobium mobile, Methanolacinia paynteri, and Methanoplanus petrolearius were differentiated from each other by the endonuclease AluI; Methanofollis liminatans, Methanospirillum hungatei, and Methanoculleus bourgensis were differentiated from each other by HpaII; and the combination of FokI and MluNI was used to differentiate Methanobrevibacter sp. ZA-10, and Methanobrevibacter arboriphilicus strains DH-1, AZ, and DC from each other. We could not differentiate the following pairs of strains from each other: Methanosarcina mazeii S-6 and C16, Methanobacterium bryantii MoH and MoH-G, Methanobacterium thermoautotrophicum GC-1 and DeltaH, and Methanobrevibacter arborophillicus DC and A2. This riboprint strategy provided a simple and rapid method to presumptively identify 22 of the 26 diverse strains of methanogens belonging to 13 genera from a range of environments.  相似文献   

15.
The molecular phylogeny of methanogenic archaea associated with the flagellated protist species Dinenympha and Microjoenia in the gut of termites, Reticulitermes speratus and Hodotermopsis sjoestedti, and those attached to the gut epithelium was examined based on PCR-amplified small-subunit ribosomal RNA genes. The sequences identified were classified into six groups within the genus Methanobrevibacter, including groups of yet uncharacterized novel species. Closely related methanogens were shared between Microjoenia and some Dinenympha cells in each termite. The methanogens harbored by the flagellates were phylogenetically different from the methanogens associated with the gut epithelium, suggesting that distinct methanogen species showed distinct spatial distributions in the termite gut.  相似文献   

16.
Rumen methanogens in sheep from Venezuela were examined using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE) profiles prepared from pooled and individual PCR products from the rumen contents from 10 animals. A total of 104 clones were examined, revealing 14 different 16S rRNA gene sequences or phylotypes. Of the 14 phylotypes, 13 (99 of 104 clones) belonged to the genus Methanobrevibacter, indicating that the genus Methanobrevibacter is the most dominant component of methanogen populations in sheep in Venezuela. The largest group of clones (41 clones) was 97.9-98.5% similar to Methanobrevibacter gottschalkii. Two sequences were identified as possible new species, one belonging to the genus Methanobrevibacter and the other belonging to the genus Methanobacterium. DGGE analysis of the rumen contents from individual animals also revealed 14 different bands with a range of 4-9 bands per animal.  相似文献   

17.
The population of methanogens in the sheep rumen microbial ecosystem was studied by using 16S rDNA cloning analysis, epifluorescence microscopy (which detects autofluorescence of a specific cofactor F420 in methanogens) and the 16S rRNA-targeted in situ hybridization technique. The 16S rDNA clone libraries were constructed by PCR amplification with an Archaea-specific primer set and partial sequencing of the clonal 16S rDNAs was done. Phylogenetic analysis indicated that the clones were affiliated with Methanomicrobium ruminantium and mobile, Methanobrevibacter smithii. Epifluorescence microscopy (F420 autofluorescence) and in situ hybridization by using a newly designed M. mobile-specific 16S rRNA-targeted oligonucleotide probe found that methanogens accounted for approximately 3.6% of total ruminal microorganisms and approximately 54% of the total methanogens were M. mobile.  相似文献   

18.
In previous studies, the abundance and diversity of methanogenic archaea in the dental microbiota have been analysed by the detection of specific DNA sequences by PCR-based investigations and metagenomic studies. Few data issued regarding methanogens actually living in dental plaque. We collected dental plaque specimens in 15 control individuals and 65 periodontitis patients. Dental plaque specimens were cultured in an anoxic liquid medium for methanogens in the presence of negative control tubes. Dental plaque methanogens were cultured from 1/15 (6.67%) control and 36/65 (55.38%) periodontitis patient samples (p<0.001). The cultures yielded Methanobrevibacter oralis in one control and thirty-one patients, Methanobrevibacter smithii in two patients and a potential new species named Methanobrevibacter sp. strain N13 in three patients with severe periodontitis. Our observations of living methanogens, strengthen previous observations made on DNA-based studies regarding the role of methanogens, in periodontitis.  相似文献   

19.
Reductive acetogenesis is not competitive with methanogenesis in adult ruminants, whereas acetogenic bacteria are the dominant hydrogenotrophs in the early rumen microbiota. The ecology of hydrogenotrophs in the developing rumen was investigated using young lambs, raised in sterile isolators, and conventional adult sheep. Two lambs were born naturally, left with their dams for 17?h and then placed into a sterile isolator and reared aseptically. They were inoculated with cellulolytic bacteria and later with Methanobrevibacter sp. 87.7 to investigate the effect of methanogen establishment on the rumen acetogen population since they lacked cultivable representatives of methanogens. Putative acetogens were investigated by acetyl-CoA synthase and formyltetrahydrofolate synthetase gene analysis and methanogens by methyl coenzyme reductase A gene analysis. Unexpectedly, a low abundant but diverse population of methanogens (predominantly Methanobrevibacter spp.) was identified in isolated lambs pre-inoculation with Mbb. sp 87.7, which was similar to the community structure in conventional sheep. In contrast, potential acetogen diversity in isolated lambs and conventional sheep was different. Potential acetogens affiliated between the Lachnospiraceae and Clostridiaceae in conventional sheep and with the Blautia genus and the Lachnospiraceae in isolated lambs. The establishment of Mbb. sp. 87.7 (1,000-fold increase in methanogens) did not substantially affect acetogen diversity.  相似文献   

20.
Three methanogen 16S rRNA gene clone libraries were constructed from liquid (LM), solid (SM) and epithelium (EM) fractions taken from the rumen of Jinnan cattle in China. After the amplification by PCR using methanogen-specific primers Met86F and Met1340R, equal quantities of PCR products from the same fractions from each of the four cattle were mixed together and used to construct the three libraries. Sequence analysis showed that the 268 LM clones were divided into 35 phylotypes with 18 sequences of phylotypes affiliated with the genus Methanobrevibacter (84.3% of clones). The 135 SM clones were divided into 19 phylotypes with 11 phylotypes affiliated with the genus Methanobrevibacter (77.8%). The 267 EM clones were divided into 33 phylotypes with 15 phylotypes affiliated with the genus Methanobrevibacter (77.2%). Clones closely related to Methanomicrobium mobile and Methanobrevibacter wolinii were only found in the LM library, and those to Methanobrevibacter ruminantium and Methanobrevibacter gottschalkii only in the SM library. LM library comprised 12.4% unidentified euryarchaeal clones, SM library 23.7% and EM library 25.5%, respectively. Five phylotypes (accession number: EF055528 and EF055531-EF055534) did not belong to the Euryarchaeota sequences we had known. One possible new genus (represented by phylotype E17, accession number EF055528) belonging to Methanobacteriaceae was identified from EM library. Quantitative real-time PCR for the first time revealed that epithelium fraction had significantly higher density of methanogens, with methanogenic mcrA gene copies (9.95 log 10 (copies per gram of wet weight)) than solid (9.26, P < 0.01) and the liquid (8.44, P < 0.001). The three clone libraries also appeared different in Shannon index (EM library 2.12, LM library 2.05 and SM library 1.73). Our results showed that there were apparent differences in the methanogenic diversity and abundance in the three different fractions within the rumen of Jinnan cattle, with Methanobrevibacter species predominant in all the three libraries and with epithelium fraction having more unknown species and higher density of methanogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号