首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The docking protein p130Cas (Cas) becomes tyrosine-phosphorylated in its central substrate domain in response to extracellular stimuli such as integrin-mediated cell adhesion, and transmits signals through interactions with various intracellular signaling molecules such as the adaptor protein Crk. Src-family kinases (SFKs) bind a specific site in the carboxyl-terminal region of Cas and subsequently SFKs phosphorylate progressively the substrate domain in Cas. In this study crystallography, mutagenesis and binding assays were used to understand the molecular basis for Cas interactions with SFKs. Tyrosine phosphorylation regulates binding of Cas to SFKs, and the primary site for this phosphorylation, Y762, has been proposed. A phosphorylated peptide corresponding to Cas residues 759MEDpYDYVHL767 containing the key phosphotyrosine was crystallized in complex with the SH3-SH2 domain of the SFK Lck. The results provide the first structural data for this protein-protein interaction. The motif in Cas 762pYDYV binds to the SH2 domain in a mode that mimics high-affinity ligands, involving dual contacts of Y762 and V765 with conserved residues in SFK SH2 domains. In addition, Y764 is in position to make an electrostatic contact after phosphorylation with a conserved SFK arginine that mediates interactions with other high-affinity SH2 binders. These new molecular data suggest that Cas may regulate activity of Src as a competing ligand to displace intramolecular interactions that occur in SFKs (between the C-terminal tail and the SH2 domain) and restrain and down-regulate the kinase in an inactive form.  相似文献   

2.
3.
BCAR3 binds to the carboxy-terminus of p130Cas, a focal adhesion adapter protein. Both BCAR3 and p130Cas have been linked to resistance to anti-estrogens in breast cancer, Rac activation and cell motility. Using R743A BCAR3, a point mutant that has lost the ability to bind p130Cas, we find that BCAR3-p130Cas complex formation is not required for BCAR3-mediated anti-estrogen resistance, Rac activation or discohesion of epithelial breast cancer cells. Complex formation was also not required for BCAR3-induced lamellipodia formation in BALB/c-3T3 fibroblasts but was required for optimal BCAR3-induced motility. Although both wildtype and R743A BCAR3 induced phosphorylation of p130Cas and the related adapter protein HEF1/NEDD9, chimeric NSP3:BCAR3 experiments demonstrate that such phosphorylation does not correlate with BCAR3-induced anti-estrogen resistance or lamellipodia formation. Wildtype but not R743A BCAR3 induced lamellipodia formation and augmented cell motility in p130Cas−/− murine embryonic fibroblasts (MEFs), suggesting that while p130Cas itself is not strictly required for these endpoints, complex formation with other CAS family members is, at least in cells lacking p130Cas. Overall, our work suggests that many, but not all, BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. These studies also indicate that disruption of the BCAR3-p130Cas complex is unlikely to reverse BCAR3-mediated anti-estrogen resistance.  相似文献   

4.
Prostate cancer metastasis is often associated with poor prognosis. The molecular coupling of the adaptor protein Crk to the docking protein p130(Cas) serves as a switch that regulates cell migration in several invasive cancer cells and Ack appears to act upstream of CrkII to modulate the cell motility. However, the precise role of Ack, Crk and p130(Cas) complex in prostate cancer migration remains unknown. In this study we examined the expression of Crk and p130(Cas) in prostate cancer cell lines, and found that CrkI and p130(Cas) protein level was higher in highly invasive PC-3M and PC-3 cell lines than in moderately invasive DU-145 cells. Upon shRNA mediated knockdown of CrkI and p130(Cas) in PC-3M cells, cell migration and invasion were significantly inhibited as analyzed by wound healing assay and transwell invasion assay. Furthermore, co-immunoprecipitation assay showed that p130(Cas) interacted with CrkI in PC-3M cells and the stability of p130(Cas) and CrkI depended on each other. AckI interacted with both CrkI and p130(Cas) and the interaction of AckI with CrkI seemed to be independent of p130(Cas) . Taken together, our results demonstrate the high expression of CrkI and p130(Cas) in invasive prostate cancer cells and the important role of CrkI/p130(Cas) complex in the migration and invasion of prostate cancer cells. These data suggest that CrkI/p130(Cas) could be exploited as potential molecular therapeutic target for prostate cancer metastasis.  相似文献   

5.
Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM‐R cells, which were established by long‐term exposure of estrogen (E2)‐dependent MCF‐7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant‐negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial‐like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3‐kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti‐apoptotic protein Bcl‐2. Importantly, these changes re‐sensitized TAM‐R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. J. Cell. Biochem. 107: 364–375, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The small GTPase Rap1 induces integrin activation via an inside-out signaling pathway mediated by the Rapl-interacting adaptor mol- ecule (RIAM). Blocking this pathway may suppress tumor metastasis and other diseases that are related to hyperactive integrins. However, the molecular basis for the specific recognition of RIAM by Rap1 remains largely unknown. Herein we present the crystal structure of an active, GTP-bound GTPase domain of Rap1 in complex with the Ras association (RA)-pleckstrin homology (PH) structural module of RIAM at 1.65 A. The structure reveals that the recognition of RIAM by Rap1 is governed by side-chain interactions. Several side chains are critical in determining specificity of this recognition, particularly the Lys31 residue in Rap1 that is oppositely charged compared with the Glu31/Asp31 residue in other Ras GTPases. Lys31 forms a salt bridge with RIAM residue Glu212, making it the key specificity determinant of the interaction. We also show that disruption of these interactions results in reduction of Rapl:RIAM association, leadingto a loss of co-clustering and cell adhesion. Our findings elucidate the molecular mechanism by which RIAM med- iates Rapl-induced integrin activation. The crystal structure also offers new insight into the structural basis for the specific recruitment of RA-PH module-containing effector proteins by their smaU GTPase partners.  相似文献   

7.
Human neutrophil α-defensins (HNPs) are cationic antimicrobial peptides that are synthesized in vivo as inactive precursors (proHNPs). Activation requires proteolytic excision of their anionic N-terminal inhibitory pro peptide. The pro peptide of proHNP1 also interacts specifically with and inhibits the antimicrobial activity of HNP1 inter-molecularly. In the light of the opposite net charges segregated in proHNP1, functional inhibition of the C-terminal defensin domain by its propeptide is generally thought to be of electrostatic nature. Using a battery of analogs of the propeptide and of proHNP1, we identified residues in the propeptide region important for HNP1 binding and inhibition. Only three anionic residues in the propeptide, Glu15, Asp20 and Glu23, were modestly important for interactions with HNP1. By contrast, the hydrophobic residues in the central part of the propeptide, and the conserved hydrophobic motif Val24Val25Val26Leu28 in particular, were critical for HNP1 binding and inhibition. Neutralization of all negative charges in the propeptide only partially activated the bactericidal activity of proHNP1. Our data indicate that hydrophobic forces have a dominant role in mediating the interactions between HNP1 and its propeptide — a finding largely contrasting the commonly held view that the interactions are of an electrostatic nature.  相似文献   

8.
Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.  相似文献   

9.
10.
Mitosis is a highly regulated process that allows the equal distribution of the genetic material to the daughter cells. Chromosome segregation requires the formation of a bipolar mitotic spindle and assembly of a multi-protein structure termed the kinetochore to mediate attachments between condensed chromosomes and spindle microtubules. In budding yeast, a single microtubule attaches to each kinetochore, necessitating robustness and processivity of this kinetochore–microtubule attachment. The yeast kinetochore-localized Dam1 complex forms a direct interaction with the spindle microtubule. In vitro, the Dam1 complex assembles as a ring around microtubules and couples microtubule depolymerization with cargo movement. However, the subunit organization within the Dam1 complex, its higher-order oligomerization and how it interacts with microtubules remain under debate. Here, we used chemical cross-linking and mass spectrometry to define the architecture and subunit organization of the Dam1 complex. This work reveals that both the C termini of Duo1 and Dam1 subunits interact with the microtubule and are critical for microtubule binding of the Dam1 complex, placing Duo1 and Dam1 on the inside of the ring structure. Integrating this information with available structural data, we provide a coherent model for how the Dam1 complex self-assembles around microtubules.  相似文献   

11.
Although chemotherapeutic drugs could theoretically target all metastatic sites, current treatments do not provide complementary therapeutics. Therefore, the development of an alternative approach replacing the traditional therapy is urgently needed. To assess the killing efficiency of the functionally identified apoptosis-related protein (APR)-1 in melanoma cells, we established a system for the regulated expression of APR-1. The induction of APR-1 expression caused apoptosis of melanoma cells via the interaction with the juxtamembrane region of p75 neurotrophin receptor (p75NTR), and possible also via the competition with tumour necrosis factor receptor-associated factor-6 (TRAF6) and the catalytic receptor of neurotrophin (Trk) for the same p75NTR interacting site. The accumulation of APR-1 in melanoma cells may block the physical association of p75NRT with TRAF6 and/or Trk, leading to the disruption of both NF-κB and extracellular signal-regulated kinase (ERK) pathways. Also, accumulation of APR-1 protein enhanced the activity of both c-Jun-N-terminal kinase (JNK) and p38 pathways. However, the analysis of APR-1-modulated pathways demonstrated the involvement of apoptosis-regulating kinase 1-JNK/p38 pathway in the induction of Bax expression leading to both mitochondrial dysregulation [as demonstrated by the loss of mitochondrial membrane potential, the release of both cytochrome c and apoptosis-inducing factor into cytoplasm, and cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP)] and endoplasmic reticulum stress as demonstrated by the increase of intracellular Ca(2+) release. Thus, besides the analysis of its pro-apoptotic function, our data provide insight into the molecular mechanism of APR-1-induced apoptosis of melanoma cells.  相似文献   

12.
p8 is an 80 amino-acid polypeptide identified because of its remarkable over-expression in the stressed pancreas. This protein, apparently devoid of enzymatic activity, is a powerful regulator of several intracellular pathways, suggesting that it has to interact with several molecular partners to modulate their activity. We used two-hybrid screening of a pre-transformed human testes cDNA library to identify some of these partners. One of them was the multifunctional protein Jab1, its interaction with p8 being confirmed by His6-pull down and co-immunoprecipitation assays. In addition, we could show that the two proteins co-localized in the cell. Our functional data demonstrate that Jab1 requires direct interaction with p8 to induce the translocation of p27 from nucleus to cytoplasm and its subsequent degradation. Experiments showing that the knock-down of p8 expression results in a strong inhibition of Jab1 activity confirmed that the mechanism by which Jab1 promotes cell growth by decreasing p27 level is p8-dependent.  相似文献   

13.
14.
Elevated levels of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130Cas promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130Cas protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130Cas-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130Cas exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130Cas on cell biology and therefore will be the target of future studies.  相似文献   

15.
Latent membrane protein 1 (LMP1), an oncogenic protein encoded by Epstein-Barr virus (EBV), has been verified to be phosphorylated in vitro by protein casein kinase 2 (CK2). In this study, we characterized the phosphorylation of the carboxyl terminus of LMP1 fused with glutathione-S-transferase (GST-LMP1c) and the FLAG-epitope-tagged LMP1 (F-LMP1) proteins expressed in HEK293T cells. Using a combination of chemical modification and tandem mass spectrometry, we detected the phosphorylation of a tryptic peptide, 191-223 amino acids, in both GST-LMP1c catalysed by CK2 and F-LMP1-expressing cell lines. Serine residues at positions 211 and 215 were determined to be the substrates of CK2 in vitro. Most importantly, the S215 phosphorylation was also detected in F-LMP1-expressing human cell lines. The phosphorylation of S215, which is located in the carboxyl-terminus activation region 1 of LMP1, provides a new insight for investigating the role and modulation of the phosphorylation of LMP1.  相似文献   

16.
Recent studies in tumor homing peptides have shown the specificity of LyP-1 (CGNKRTRGC) to tumor lymphatics. In this present work, we evaluated the possible interactions between cyclic LyP-1 and its receptor, p32, with molecular dynamics and docking studies in order to lead the design of novel LyP-1 derivatives, which could bind to p32 more effectively and perform enhanced antitumor effect. The total binding enthalpy energies have been obtained by MM-PBSA thermodynamic computations and the favorability of p32.LyP-1 complex in water has been shown by explicit water MD computations. The last 30 ns of molecular dynamics trajectory have shown the strong interaction of LyP-1 with the inner surface chains of p32, especially with chains B and C. ALA-SCAN mutagenesis studies have indicated the considerable influence of Asn3, Lys4, Arg5, and Arg7 amino acid residues on the specific binding of LyP-1. Within the knowledge of the critical role of p32 receptor in cancer cell metabolism, this study can lead to further developments in anticancer therapy by targeting p32 with LyP-1 derivatives as active targeting moiety. This data can also be applied for the development of new drug delivery systems in which LyP-1 can be used for its targeting and anticancer properties.  相似文献   

17.
Golgi-localizing, gamma-adaptin ear domain homology, ADP ribosylation factor-binding (GGA) proteins and the adaptor protein (AP) complex, AP-1, are involved in membrane traffic between the trans Golgi network and the endosomes. The gamma-adaptin ear (GAE) domain of GGAs and the gamma1 ear domain of AP-1 interact with an acidic phenylalanine motif found in accessory proteins. The GAE domain of GGA1 (GGA1-GAE) interacts with a WNSF-containing peptide derived from its own hinge region, although the peptide sequence deviates from the standard acidic phenylalanine motif. We report here the structure of GGA1-GAE in complex with the GGA1 hinge peptide, which revealed that the two aromatic side chains of the WNSF sequence fit into a hydrophobic groove formed by aliphatic portions of the side chains of conserved arginine and lysine residues of GGA1-GAE, in a similar manner to the interaction between GGA-GAEs and acidic phenylalanine sequences from the accessory proteins. Fluorescence quenching experiments indicate that the GGA1 hinge region binds to GGA1-GAE and competes with accessory proteins for binding. Taken together with the previous observation that gamma1 ear binds to the GGA1 hinge region, the interaction between the hinge region and the GAE domain underlies the autoregulation of GGA function in clathrin-mediated trafficking through competing with the accessory proteins and the AP-1 complex.  相似文献   

18.
The yeast FES1 and SLS1 genes encode conserved nucleotide exchange factors that act on the cytoplasmic and endoplasmic reticulum luminal Hsp70s, Ssa1p and BiP, respectively. We report here that mammalian HspBP1 is homologous to Fes1p and that HspBP1 promotes nucleotide dissociation from both Ssa1p and mammalian Hsc70. In contrast, Fes1p inefficiently strips nucleotide from mammalian Hsc70, and unlike HspBP1 does not inhibit chaperone-mediated protein refolding in vitro. Together, our data indicate that HspBP1 is a member of this new class of nucleotide exchange factors that exhibit varying degrees of compartment and species specificity.  相似文献   

19.
核辅激活因子PGC-1作用分子机制的研究进展   总被引:2,自引:1,他引:1  
孙亮  金锋  王沥  杨泽 《遗传》2005,27(2):302-308
过氧化物酶体增殖物激活受体γ辅激活因子1(peroxisome proliferator-activated receptor-γ coactivator-1, PGC-1)通过结合下游转录因子广泛参与线粒体生物合成、肝糖异生等重要代谢通路调节,对于维持生物体能量动态平衡有重要生理意义。文章着重综述了基于PGC-1基因及蛋白结构基础的分子对接、组蛋白乙酰化、RNA加工等分子机制的研究现状,并初步探讨了其与代谢综合征发生的应用展望。  相似文献   

20.
It has been previously described by different groups that poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53 form tight complexes. We investigated which domains of human PARP-1 and of human wild-type p53 were involved in this protein-protein interaction. We generated baculoviral constructs encoding full length protein or distinct functional domains of both proteins. Baculovirally expressed wild-type p53 was posttranslationally modified. Full length PARP-1 was simultaneously coexpressed in insect cells with full length wt p53 protein or its distinct truncated fragments and vice versa. Reciprocal immunoprecipitation of Sf9 cell lysates revealed that the central and carboxy-terminal fragments of p53 were sufficient to confer binding to PARP-1. The amino-terminal part harboring the transactivation functional domain of p53 was dispensable. On the other hand, the amino-terminal and central fragments of PARP-1 were necessary for complex formation with p53 protein. Finally, we explored the functional significance of the interaction between both proteins. Inactivation of PARP-1 resulted in the reduction of p53 steady-state levels. Inhibition of nuclear export by leptomycin B prevented accelerated degradation of p53 in PARP-1 KO cells and led to accumulation of p53 protein. Considering the fact that the accelerated p53 nuclear export in the absence of PARP-1 contributes to enhanced p53 degradation, we conclude that PARP-1 may mask the NES of p53 through complex formation with its carboxy-terminal part, thereby preventing the export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号