首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

2.
Scavenger receptor class B type I (SR-BI) delivers cholesterol ester from HDL to cells via a selective uptake mechanism, whereby lipid is transferred from the core of the particle without concomitant degradation of the protein moiety. The precise metabolic fate of HDL particles after selective lipid uptake is not known. To characterize SR-BI-mediated HDL processing in vivo, we expressed high levels of this receptor in livers of apoA-I(-/-) mice by adenoviral vector gene transfer, and then injected the mice with a bolus of human HDL(2) traced with (125)I-dilactitol tyramine. HDL recovered from apoA-I(-/-) mice over-expressing SR-BI was significantly smaller than HDL recovered from control mice as measured by non-denaturing gel electrophoresis. When injected into C57BL/6 mice, these HDL "remnants" were rapidly converted to HDL(2)-sized lipoprotein particles, and were cleared from the plasma at a rate similar to HDL(2). In assays in cultured cells, HDL remnants did not stimulate ATP-binding cassette transporter A1-dependent cholesterol efflux. When mixed with mouse plasma ex vivo, HDL remnants rapidly converted to larger HDL particles. These studies identify a previously ill-defined pathway in HDL metabolism, whereby SR-BI generates small, dense HDL particles that are rapidly remodeled in plasma. This remodeling pathway may represent a process that is important in determining the rate of apoA-I catabolism and HDL-mediated reverse cholesterol transport.  相似文献   

3.
Peripheral lymph lipoproteins have been characterized in animals, but there is little information about their composition, and none about their ultrastructure, in normal humans. Therefore, we collected afferent leg lymph from 16 healthy males and quantified lipids and apolipoproteins in fractions separated by high performance-size exclusion chromatography. Apolipoprotein B (apoB) was found almost exclusively in low density lipoproteins. The distribution of apoA-I, particularly in lipoprotein A-I (LpA-I) without A-II particles, was shifted toward larger particles relative to plasma. The fractions containing these particles were also enriched in apoA-II, apoE, total cholesterol, and phospholipids and had greater unesterified cholesterol-to-cholesteryl ester ratios than their counterparts in plasma. Fractions containing smaller apoA-I particles were enriched in phospholipid. Most apoA-IV was lipid poor or lipid free. Most apoC-III coeluted with large apoA-I-containing particles. Electron microscopy showed that lymph contained discoidal particles not seen in plasma. These findings support other evidence that high density lipoproteins (HDL) undergo extensive remodeling in human tissue fluid. Total cholesterol concentration in lymph HDL was 30% greater (P < 0.05) than could be explained by the transendothelial transfer of HDL from plasma, providing direct confirmation that HDL acquire cholesterol in the extravascular compartment. Net transport rates of new HDL cholesterol in the cannulated vessels corresponded to a mean whole body reverse cholesterol transport rate via lymph of 0.89 mmol (344 mg)/day.  相似文献   

4.
After receptor-mediated endocytosis of triglyceride-rich lipoproteins (TRL) into the liver, TRL particles are immediately disintegrated in peripheral endosomal compartments. Whereas core lipids and apoprotein B are delivered for degradation into lysosomes, TRL-derived apoE is efficiently recycled back to the plasma membrane. This is followed by apoE re-secretion and association of apoE with high density lipoproteins (HDL). Because HDL and apoE can independently promote cholesterol efflux, we investigated whether recycling of TRL-derived apoE in human hepatoma cells and fibroblasts could be linked to intracellular cholesterol transport. In this study we demonstrate that HDL(3) does not only act as an extracellular acceptor for recycled apoE but also stimulates the recycling of internalized TRL-derived apoE. Furthermore, radioactive pulse-chase experiments indicate that apoE recycling is accompanied by cholesterol efflux. Confocal imaging reveals co-localization of apoE and cholesterol in early endosome antigen 1-positive endosomes. During apoE re-secretion, HDL(3)-derived apoA-I is found in these early endosome antigen 1, cholesterol-containing endosomes. As shown by time-lapse fluorescence microscopy, apoE recycling involves the intracellular trafficking of apoA-I to pre-existing and TRL-derived apoE/cholesterol-containing endosomes in the periphery. Thus, these studies provide evidence for a new intracellular link between TRL-derived apoE, cellular cholesterol transport, and HDL metabolism.  相似文献   

5.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

6.
A method is described which will determine the distribution of individual apolipoproteins within the HDL subclasses. This method requires 1-2 microliters of plasma per determination and involves six steps: 1) electrophoresis of samples on non-denaturing 2-30% concave acrylamide gradient gels; 2) electrophoretic transfer of the lipoproteins to charge-modified nylon membranes; 3) fixation of the transferred lipoproteins with glutaraldehyde; 4) immunolocalization of the apolipoproteins with iodinated monospecific antibodies; 5) autoradiography followed by densitometry; and 6) reduction of the data to provide a plot of percent distribution versus particle size. When this method was applied to the analysis of rat apolipoproteins, differences were noted in the distribution of apoA-I, apoA-IV, and apoE. The majority of apoA-I was localized to HDL particles between 9 and 12 nm in diameter, with a median diameter of 10.0 nm, while apoE resided on substantially larger particles with a median diameter of 12.5 nm. ApoA-IV could be localized to three distinct areas: an HDL particle with a median diameter approximately 0.4 nm larger than apoA-I HDL, a particle smaller than albumin (lipoprotein-free apoA-IV), and a particle of 7.6 nm that does not appear to contain apoA-I or apoE.  相似文献   

7.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

8.
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon -2, Q[-2]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small alpha-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow alpha migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.  相似文献   

9.
The levels of plasma apolipoprotein (apo) E, an anti-atherogenic protein involved in mammalian cholesterol transport, were found to be 2-3 fold lower in mice over-expressing human apoA-I gene. ApoE is mainly associated with VLDL and HDL-size particles, but in mice the majority of the apoE is associated with the HDL particles. Over-expression of the human apoA-I in mice increases the levels of human apoA-I-rich HDL particles by displacing mouse apoA-I from HDL. This results in lowering of plasma levels of mouse apoA-I. Since plasma levels of apoE also decreased in the apoA-I transgenic mice, the mechanism of apoE lowering was investigated. Although plasma levels of apoE decreased by 2-3 fold, apoB levels remained unchanged. As expected, the plasma levels of human apoA-I were almost 5-fold higher in the apoAI-Tg mice compared to mouse apoA-I in WT mice. If the over-expression of human apoA-I caused displacement of apoE from the HDL, the levels of hepatic apoE mRNA should remain the same in WT and the apoAI-Tg mice. However, the measurements of apoE mRNA in the liver showed 3-fold decreases of apoE mRNA in apoAI-Tg mice as compared to WT mice, suggesting that the decreased apoE mRNA expression, but not the displacement of the apoE from HDL, resulted in the lowering of plasma apoE in apoAI-Tg mice. As expected, the levels of hepatic apoA-I mRNA (transgene) were 5-fold higher in the apoAI-Tg mice. ApoE synthesis measured in hepatocytes also showed lower synthesis of apoE in the apoAI-Tg mice. These studies suggest that the integration of human apoA-I transgene in mouse genome occurred at a site that affected apoE gene expression. Identification of this locus may provide further understanding of the apoE gene expression.  相似文献   

10.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

11.
Diet-induced changes in high density lipoprotein (HDL) density and size were studied in patas monkeys. When the animals were switched from a moderate fat-low cholesterol diet to a high fat-high cholesterol (HFHC) diet, the plasma apoA-I levels increased initially in all of the animals. The apoA-I levels remained elevated in monkeys able to maintain their plasma cholesterol concentrations near basal levels (hyporesponders), but began to decrease in monkeys who became severely hypercholesterolemic (hyperresponders), reaching levels as low as 65-70% of their basal value by 24 weeks. The larger, lipid-rich HDL (HDL2) was shown by density gradient ultracentrifugation and gradient-PAGE (polyacrylamide gel electrophoresis) to be the HDL fraction responsible for these changes in apoA-I, completely accounting for the increase in apoA-I in hyporesponders and the decrease in apoA-I in hyperresponders. The HDL3 levels remained unchanged in hyporesponders but increased markedly in hyperresponders, partially compensating for the decrease of HDL2 in those animals. Gradient-PAGE showed the HDL3 to be heterogeneous, containing at least two populations of particles of the same density but differing significantly in size. The smaller of these HDL3 were most prominent in the HFHC-fed hyperresponders. These data show that nonhuman primate HDL is both physically and metabolically heterogeneous, and indicate that a high fat-high cholesterol diet-induced hypercholesterolemia severely depresses the HDL2 levels.  相似文献   

12.
The severe depletion of cholesteryl ester (CE) in steroidogenic cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays a specific role in the high density lipoprotein (HDL) CE-selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. The nature of this role, however, is unclear because a variety of apolipoproteins bind to SR-BI expressed in transfected cells. In this study the role of apoA-I in SR-BI-mediated HDL CE-selective uptake was tested via analyses of the biochemical properties of apoA-I(-/-) HDL and its interaction with SR-BI on adrenocortical cells, hepatoma cells, and cells expressing a transfected SR-BI. apoA-I(-/-) HDL are large heterogeneous particles with a core consisting predominantly of CE and a surface enriched in phospholipid, free cholesterol, apoA-II, and apoE. Functional analysis showed apoA-I(-/-) HDL to bind to SR-BI with the same or higher affinity as compared with apoA-I(+/+) HDL, but apoA-I(-/-) HDL showed a 2-3-fold decrease in the V(max) for CE transfer from the HDL particle to adrenal cells. These results indicate that the absence of apoA-I results in HDL particles with a reduced capacity for SR-BI-mediated CE-selective uptake. The reduced V(max) illustrates that HDL properties necessary for binding to SR-BI are distinct from those properties necessary for the transfer of HDL CE from the core of the HDL particle to the plasma membrane. The reduced V(max) for HDL CE-selective uptake likely contributes to the severe reduction in CE accumulation in steroidogenic cells of apoA-I(-/-) mice.  相似文献   

13.
The role of lecithin:cholesterol acyltransferase (LCAT) in the formation of plasma high density lipoproteins (HDL) was studied in a series of in vitro incubations in which perfusates from isolated African green monkey livers were incubated at 37 degrees C with partially purified LCAT for between 1 and 13 hr. The HDL particles isolated from monkey liver perfusate stored at 4 degrees C and not exposed to added LCAT contained apoA-I and apoE, were deficient in neutral lipids, and were observed by electron microscopy as discoidal particles. Particle sizes, measured as Stokes' diameters by gradient gel electrophoresis (GGE), ranged between 7.8 nm and 15.0 nm. The properties of perfusate HDL were unchanged following incubation at 37 degrees C in the presence of an LCAT inhibitor. However, HDL subfractions derived from incubations at 37 degrees C with active LCAT contained apoA-I as the major apoprotein, appeared round by electron microscopy, and possessed chemical compositions similar to plasma HDL. The HDL isolated from perfusate incubations at 37 degrees C with low amounts of LCAT had a particle size and chemical composition similar to plasma HDL3a. In three of four perfusates incubated with higher levels of LCAT activity, the HDL products consisted of two distinct HDL subpopulations when examined by GGE. The major subpopulation was similar in size and composition to plasma HDL2a, while the minor subpopulation demonstrated the characteristics of plasma HDL2b. The data indicate that the discoidal HDL particles secreted by perfused monkey livers can serve as precursors to three of the major HDL subpopulations observed in plasma.  相似文献   

14.
To determine whether altered hepatic secretion of HDL is part of the mechanism by which polyunsaturated fat lowers plasma HDL concentration, we have studied HDL secretion in the isolated perfused livers of African green monkeys fed an atherogenic diet containing either safflower oil as the polyunsaturated fat or butter as the saturated fat. During recirculating perfusion with a lipoprotein-free medium, livers from safflower oil-fed animals produced 21% less HDL mass on the average than those from butter-fed animals. Newly secreted hepatic HDL were characterized after their isolation and subfractionation by a combination of agarose column chromatography and density gradient ultracentrifugation. In both diet groups the HDL were heterogeneous in size, morphology, and composition and consisted of discoidal particles ranging in diameter from greater than 200 A to as little as 50 A. Large, discoidal particles that were rich in apoE and apoA-I were separated from small particles that were poor in apoE but rich in apoA-I. All hepatic HDL subfractions contained only small amounts of cholesteryl ester and triglyceride. The hepatic particles resembled in composition and structure the large variety of HDL particles found in the plasma of patients with the familial deficiency of lecithin:cholesterol acyltransferase. Accordingly, perfusate LCAT activity was measured and found to be 2% or less than that in monkey plasma. We conclude that the perfused monkey liver produces a variety of nascent HDL that are relatively unmodified by the post-secretory metabolic events which normally occur in blood plasma in vivo, and that livers of polyunsaturated fat-fed monkeys secrete fewer plasma HDL precursor particles than do those of saturated fat-fed monkeys.  相似文献   

15.
We have shown mouse to be an useful animal model for studies on the estrogen-mediated synthesis and secretion of lipoproteins since, unlike in rats, low density lipoprotein receptors are not upregulated in mice [3]. This results into the elevation of plasma levels of apolipoprotein (apo) B and apoE, and lowering of apoA-I-containing particles. The mechanisms of apoB and apoE elevation by estrogen have been elucidated [6], but the mechanism of lowering of plasma levels of HDL is still not known. Among other factors, apoA-I, cholesterol ester transfer protein (CETP), scavenger receptor B1 (SR-B1), and hepatic lipase are potential candidates that modulate plasma levels of HDL. Since estrogen treatment increased hepatic apoA-I mRNA and apoA-I synthesis, and mouse express undetectable levels of CETP, we tested the hypothesis that estradiol-mediated lowering of HDL in mice may occur through modulation of hepatic lipase (HL). Four mouse strains (C57L, C57BL, BALB, C3H) were administered supraphysiological doses of estradiol, and plasma levels of HDL as well as HL mRNA were quantitated. In all 4 strains estradiol decreased plasma levels of HDL by 30%, and increased HL mRNA 2–3 fold. In a separate experiment groups of male C57BL mouse were castrated or sham-operated, and low and high doses of estradiol administered. We found 1.4–2.5 fold elevation of HL mRNA with concomitant lowering of HDL levels. Ten other mouse strains examined also showed estradiol-induced elevation of HL mRNA, but the extent of elevation was found to be strain-specific. Based on these studies, we conclude that hepatic lipase is an important determinant of plasma levels of HDL and that HL mRNA is modulated by estrogen which in turn may participate in the lowering of plasma levels of HDL.  相似文献   

16.
Particles closely resembling rat high density lipoproteins (HDL) in terms of equilibrium density profile and particle size were prepared by sonication of apoA-I with a microemulsion made with egg lecithin and cholesterol oleate. These particles, like authentic HDL, allowed selective uptake of their cholesterol ester moieties by cultured cells without parallel uptake of the particle itself. That uptake was saturable and competed by HDL. In rats, the plasma decay kinetics and sites of uptake of a cholesteryl ether tracer were similar whether that tracer was incorporated into synthetic or authentic HDL. Synthetic particles containing other apoproteins were made by generally the same method, but using in place of apoA-I either a mixture of rat apoCs or apoE that was either competent or reductively methylated to prevent interaction with the B/E receptor. These particles, of lower density and larger Stokes radius than those made with apoA-I, also allowed selective uptake of cholesterol esters, albeit with a lower degree of selectivity than in the case of apoA-I. Thus a specific apoprotein component in the subject lipoprotein particle is not required for selective uptake. However, selective uptake was shown to be a function of particle density or size, and part of the difference in rates of selective uptake from the particles made with various apoproteins was explained by their differences in density or size.  相似文献   

17.
Longitudinal studies were carried out in the rabbit model to determine alterations in the concentration and density distribution of plasma lipids and apolipoproteins during the acute phase response (APR) characterized by elevated levels of C-reactive protein (CRP) and serum amyloid A (SAA). Twelve hr after the intramuscular injection of croton oil, SAA was detectable in high density lipoprotein (HDL). At the height of the response (72 hr), HDL decreased while SAA became the major HDL apoprotein, up to 80% of the proteins in the higher density fractions. The SAA-enriched particles became denser (density of HDL3) but larger (size of HDL2), had slower electrophoretic mobility, and were depleted in apoA-I, cholesterol, triglyceride, and phospholipid. HDL-cholesterol decreased and was redistributed to other fractions while apoA-I disappeared from the circulation. During this time plasma triglycerides increased 6- to 10-fold while plasma cholesterol and phospholipids showed minimal changes. ApoB increased 5- to 6-fold while the apoB-containing particles shifted to higher density resulting in elevated IDL and then LDL during recovery. VLDL (d less than 1.006 g/ml) increased and acquired 30-40% of the plasma triglycerides, cholesterol, phospholipid, and apoB. SAA also increased in VLDL while apoE decreased.  相似文献   

18.
We hypothesized that small HDL particles, containing two apoA-I molecules but no apoA-II (LpAI), may be converted in vivo into medium and large HDL particles, containing three or four apoA-I molecules, respectively, and that more conversion will occur in animals with higher HDL concentrations. To test this possibility, kinetic studies of small LpAI were performed in African green monkeys with either high plasma HDL cholesterol concentrations (120 +/- 36 mg/dl, mean +/- SD, n = 3) or low plasma HDL cholesterol concentrations (40 +/- 13 mg/dl, n = 3). Tracer small LpAI was purified, without ultracentrifugation, by immunoaffinity and gel filtration. After injection, the specific activity of apoA-I in small, medium, and large HDL, consisting of both LpAI and LpAI:AII particles, was followed. A multicompartmental model was developed with the simultaneous analysis of urine and plasma turnover data for the kinetics of apoA-I in small, medium, and large HDL. These analyses indicated that small HDL is converted to either medium or large HDL with little or no interconversion of medium HDL and large HDL. Much of the metabolic conversion of small HDL occurs in a sequestered pool, effectively outside the circulating plasma, in a unidirectional manner before reentering the circulating plasma as medium or large HDL. The mean fractional catabolic rate of apoA-I in small, medium, and large HDL was not different comparing the high and low HDL group. In contrast, the mean production rate of apoA-I was greater in the high HDL group compared with the low HDL group. These data support the hypothesis that the plasma concentration of HDL is primarily a function of the rate of appearance of apoA-I in medium and large HDL.  相似文献   

19.
To investigate the metabolism of HDL-apolipoprotein E (apoE) particles in human plasma, we isolated a fraction of plasma HDL-apoEs that lack apoA-I (HDL-LpE) from subjects with apoE3/3 phenotype by immunoaffinity. Plasma HDL-LpE had a particle size ranging from 9 nm to 18.5 nm in diameter and was characterized by two-dimensional nondenaturing gradient gel electrophoresis as having either gamma-, prebeta1-, prebeta2-, or alpha-electrophoretic mobility. HDL-LpE was also present in the medium of cultured human hepatoma cell lines and monocyte-derived macrophages. The majority of apoE3 was found as a monomeric form in HDL-LpE and floated at density d > 1.21 g/ml. Plasma levels of HDL-LpE in normolipidemic, CETP-deficient, and ABCA1-deficient subjects were 0.72 +/- 0.15 mg/dl (n = 12), 1.77 +/- 0.75 mg/dl (n = 3), and 0.55 +/- 0.11 mg/dl (n = 3), respectively. The ratio of HDL-apoE containing apoA-I to HDL-LpE was significantly higher 4 h after a fat load, representing a 35 +/- 9% increase (n = 3). Isolated plasma HDL-LpE3 was as effective as apoE3, reconstituted HDL particles, or apoA-I in promoting cellular cholesterol efflux. These results demonstrate that 1) plasma HDL-LpE may have hepatogenous and macrophagic origins; 2) HDL-LpE was preserved even with large reductions in apoA-I-containing lipoproteins; 3) HDL-LpE was active in the transfer of apoE to triglyceride-rich lipoproteins, and 4) HDL-LpEs efficiently take up cell-derived cholesterol.  相似文献   

20.
Interstitial fluid lipoproteins   总被引:10,自引:0,他引:10  
While a wide variety of techniques has been used to collect samples of interstitial fluid, most of our detailed knowledge about the composition of interstitial fluid lipoproteins has come from lymph collection studies. The considerable variability of lymph data probably reflects the effect of variable metabolic modification and different capillary permeabilities on the lipoprotein composition of interstitial fluid. All density classes of plasma lipoproteins are present in lymph. In peripheral lymph, the lymph/plasma concentration ratios of lipoproteins vary from 0.03 for VLDL-sized particles to 0.2 for HDL. Lymph from more permeable vascular beds, such as lung and myocardium, contains proportionately more lipoproteins. Their lymph/plasma concentration ratios vary from 0.1 to 0.6. In general, lymph lipoproteins are more heterogeneous in size than their plasma counterparts. Lymph HDL and LDL contain larger and smaller particles than their plasma equivalents. Lymph lipoproteins have unusual shapes (square packing and discoidal), chemical compositions, and molecular charge, which suggest de novo formation and/or extensive peripheral modification. Lymph HDL and LDL are enriched in free cholesterol. Lymph HDL also has increased cholesterol/protein and phospholipid/protein (especially sphingomyelin) ratios (Sloop, C.H., L. Dory, and P.S. Roheim, unpublished observations). Lymph HDL apoprotein composition differs from that of plasma, with an increase in apoE and apoA-IV content relative to apoA-I. These discoidal HDL particles may be products of an initial stage of reverse cholesterol transport. We believe further study of their metabolic fate would give important information concerning the later stages of reverse cholesterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号