首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R T Lee  Y C Lee 《Biochemistry》1987,26(20):6320-6329
The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which [43 kilodalton (kDa)] exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an 125I-labeled high-affinity reagent [a triantennary glycopeptide containing an aryl azide group on galactosyl residues; Lee, R. T., & Lee, Y. C. (1986) Biochemistry 25, 6835-6841], the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. We postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work [Hardy, M. R., Townsend, R. R., Parkhurst, S. M., & Lee, Y. C. (1985) Biochemistry 24, 22-28].  相似文献   

2.
The rat liver asialoglycoprotein receptor consists of two typesof subunits, a predominant polypeptide designated rat hepaticlectin 1 (RHL-1) and a minor polypeptide, RHL-2/3, that comesin two differentially glycosylated forms. The exact stoichiometryand arrangement of the subunits in the RHL oligomer are notknown. The carbohydrate-recognition domain of RHL-2/ has beenprepared by limited proteolysis of the liver receptor so thatits properties can be compared with those of the correspondingdomain of RHL-1 previously produced in a bacterial expressionsystem. Binding studies indicate that while RHL-1 binds N-acetylgalactosaminewith approximately 60-fold higher affinity than it binds galactose,RHL-2/ has only 2-fold selectivity for N-acetylgalactosamine.In general, the pattern of monosaccharide-binding specificityfor RHL-2/ is similar to RHL-1, but the discrimination of varioussugars relative to galactose is reduced substantially. Limitedproteolysis and crosslinking studies demonstrate that RHL- 2/is easily removed from the RHL oligomer in detergent solutionand that RHL-1 remains at least trimeric following removal ofRHL-2/. These studies suggest that RHL-1 forms a ligand-bindingcore while RHL-2/ acts more as an accessory subunit contributingto selective binding of certain oligosaccharide structures. asialoglycoprotein receptor binding carbohydrate recognition lectin proteolysis  相似文献   

3.
Several lines of indirect evidence have supported the conclusion that rat hepatic asialoglycoprotein (or galactosyl; Gal) receptors are hetero-oligomeric. In the present study more direct evidence was obtained using specific antibodies. The Gal receptor contains three different subunits; RHL 1, RHL 2 and RHL 3. Polyclonal antisera that specifically recognize either RHL 1 or RHL 2/3 subunits (Halberg et al., J. Biol. Chem. 262, 9828, 1987) were tested for their ability to interfere with the specific binding of asialo-orosomucoid to intact rat hepatocytes. The different antisera used all completely inhibited specific ligand binding to the receptor. These results indicate that functional Gal receptors on the cell surface are composed of multiple types of subunits. In addition, no evidence was found to suggest that the two previously described functionally distinct receptor populations in hepatocytes can be explained by these receptor populations containing different RHL subunits. We conclude that all receptors on the cell surface are composed of multiple subunits.  相似文献   

4.
The rat peritoneal macrophage lectin specific for galactose/N-acetylgalactosamine was shown to be a homologue of the hepatic asialoglycoprotein binding protein (rat hepatic lectin, RHL). The macrophage lectin was immunochemically crossreactive with the major form of RHL (RHL-1) but not with the minor forms (RHL-2 and -3). The overall homology between the macrophage lectin and RHL-1 was confirmed by peptide maps of their lysyl endopeptidase digests on reverse-phase HPLC. Despite these similarities, however, the macrophage lectin was distinct from HRL-1 as revealed by the differences in the NH2-terminal 20 amino acid sequences of these two lectins.  相似文献   

5.
We have developed chemical affinity reagents for the hepatic galactosyl receptor. Asialoorosomucoid (ASOR) was derivatized with five homobifunctional N-hydroxysuccinimide (NHS) ester cross-linkers. NHS/ASOR derivatives were synthesized, purified, and applied within 10 min to isolated rat hepatocytes at 4 degrees C. Specific binding of these 125I-labeled derivatives was approximately 90% in the presence of either EGTA or excess ASOR. Specific cross-linking assessed by the resistance of specifically bound NHS/125I-ASOR to release by EGTA, was 50-75% of the specifically bound ligand. The extent of specific cross-linking correlated with the average number of NHS groups per ASOR and was controlled by varying the molar ratio of cross-linker to ASOR during the synthesis. Cross-linking proceeded rapidly at 4 degrees C as a first-order process (k = 0.25 min-1, t1/2 = 2.8 min). After being cross-linked with any of the NHS/125I-ASOR derivatives, cells were washed with EGTA, solubilized in Triton X-100, and analyzed by SDS-PAGE and autoradiography. Major bands were observed at Mr congruent to 84K, 93K, and 105K corresponding to the expected size of 1:1 adducts between NHS/ASOR (Mr congruent to 41.3K) and the three subunits of the receptor, Mr congruent to 43K, 50K, and 60K. The three subunits, rat hepatic lectin (RHL) 1, 2, and 3, were labeled in the ratio of about 1.0:1.2:1.0, respectively. After cross-linking, a polyclonal goat antibody to the receptor immunoprecipitated up to 100% of the specifically cross-linked NHS/125I-ASOR. Preimmune IgG immunoprecipitated less than 1% of the radiolabeled ligand. Cell surface receptors were cross-linked to NHS-ASOR, extracted with Triton X-100, immunoprecipitated with anti-orosomucoid-Sepharose, and subjected to Western blot analysis. By use of anti-sera specific for RHL 1 or RHL 2/3 (from K. Drickamer), cross-linked complexes of Mr congruent to 85K or approximately 90-115K, respectively, were detected as were un-cross-linked native subunits. The ratio of free to cross-linked subunits was approximately 10:1 for RHL 1 and approximately 0.5:1 for RHL 2/3. We conclude that all three receptor subunits can cross-link to ligand. We propose a model in which the native receptor is a heterohexamer composed of four subunits of RHL 1 and two subunits of RHL 2 and/or RHL 3.  相似文献   

6.
R T Lee  Y C Lee 《Biochemistry》1986,25(22):6835-6841
On the basis of the knowledge that the D-galactose/N-acetyl-D-galactosamine-specific lectin of rabbit liver can tolerate a large group on the C-6 hydroxyl group of a galactoside [Lee, R. T. (1982) Biochemistry 21, 1045-1050], we prepared a high-affinity photolabeling reagent for this lectin from a triantennary glycopeptide fraction of asialofetuin. The C-6 hydroxyl group of a D-galactopyranoside was converted, under mild conditions, into a primary amino group. The procedure involves conversion of the hydroxyl group to an oxo group with galactose oxidase, followed by reductive amination using benzylamine and sodium cyanoborohydride. Catalytic hydrogenolysis of the benzylamino derivative yielded the desired 6-amino-6-deoxy-D-galactoside. A 4-azidobenzoyl group was attached to the newly produced amino group to yield a photoactivatable affinity-labeling reagent. The reagent labeled the Triton-solubilized, purified hepatic lectins of rabbit and rat in a photo- and affinity-dependent manner. All the polypeptide subunits of the lectins were labeled, indicating that each subunit contains at least one D-galactose-combining site. In the case of the rabbit hepatic lectin, the minor subunit (46 kDa) was labeled more efficiently than the major one (40 kDa).  相似文献   

7.
Galactosyl receptor, a cell surface Ca2+-dependent lectin with binding affinity for galactose, was evaluated by immunoblotting, immunoprecipitation, Northern blotting, and immunocytochemistry in human liver, testis, and sperm. Polyclonal antisera raised against the minor asialoglycoprotein receptor variant of rat hepatocytes (designated rat hepatic lectin-2/3, RHL-2/3), and its human liver-equivalent (designated H2), recognize native galactosyl receptor in the testis and sperm in immunoblotting, immunoprecipitation, and immunocytochemical experiments. An equivalent to the major hepatocyte asialoglycoprotein receptor variant (rat RHL-1 and human H1) was not detected. Human testis and sperm galactosyl receptor was resolved, after immunoprecipitation and immunoblotting, as a single protein component of molecular mass 50 kD. The single protein component in human testis and sperm contrasted with the doublet nature of rat testis and sperm galactosyl receptor, consisting of two components of molecular masses of 54 and 49 kD. Northern blotting experiments using radiolabeled H1 and H2 cDNA probes confirmed the presence of H2 mRNA and the lack of H1 mRNA in the human testis. Immunocytochemical studies detected specific antigenic sites on the entire surfaces of spermatogenic cells. However, immunoreactivity in epididymal and ejaculated sperm was confined to head surfaces overlying the acrosome. Results from these studies, and from previous studies in the rat, suggest that the testis/sperm galactosyl receptor is a C-type Ca2+-dependent lectin with possible roles in cell-cell interaction during spermatogenesis and sperm-zona pellucida binding at fertilization. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The hepatic asialoglycoprotein receptor, a galactose lectin, is an oligomer of two types of similar polypeptide chains, each of which weakly binds galactose. High-affinity binding of complex oligosaccharides requires a precise geometric arrangement of receptor subunits. The two subunits have different functions in receptor assembly, ligand binding and endocytosis.  相似文献   

9.
The primary structure of the macrophage lectin specific for galactose and N-acetylgalactosamine (macrophage asialoglycoprotein-binding protein, M-ASGP-BP) has been deduced from its cDNA sequence. The M-ASGP-BP cDNA encoded a protein consisting of 306 amino acid residues with a molecular mass of 34,242 daltons. The sequence was highly homologous with that of the rat liver asialoglycoprotein receptor (rat hepatic lectin, RHL), particularly that of RHL-1 (the major form of RHL), throughout its whole length, and especially so in its putative membrane-spanning region and carbohydrate recognition domain. There were two N-glycosylation sites in M-ASGP-BP, the location of which were identical to those in RHL-1. However, M-ASGP-BP was characteristic in having a shorter cytoplasmic tail, and an inserted segment of 24 amino acids containing an Arg-Gly-Asp sequence between the membrane-spanning region and carbohydrate recognition domain.  相似文献   

10.
Triantennary glycopeptide was oxidized with galactose oxidase to convert the -CH2OH group on terminal galactose residues to the aldehyde group (oxo-form). Kinetic profiling by reverse phase high performance liquid chromatography allowed termination of the reaction when intermediate mono-oxo- and di-oxo-triantennary glycopeptides had been produced. The mixture of the oxo-glycopeptides was derivatized with 2,4-dinitrophenylhydrazine for efficient separation, and each isomeric triantennary hydrazone was separated by reverse phase high performance liquid chromatography. The purified hydrazones were reverted to three original isomeric mono-oxo- and di-oxo-glycopeptides, and a single tri-oxo-glycopeptide. Each of these isomers was characterized by proton NMR by a downfield shift in the anomeric signals of 6-oxo-Gal residue(s). The functionalized glycopeptides were successively modified with dansyl and naphthyl groups through the 6-oxo-Gal residue and the amino terminus of the peptide to prepare three isomeric glycopeptide probes suitable for conformation studies by fluorescence energy transfer measurements. Alternatively, glycopeptides were derivatized by attaching t-butyloxycarbonyl-L-tyrosine to the amino terminus of the peptide, and reductive amination of the 6-oxo-Gal residue, provided three isomeric triantennary photoaffinity probes which allow photolyzable groups to be attached to the newly introduced 6-amino-Gal residue.  相似文献   

11.
The binding of rat hepatocytes to flat polyacrylamide surfaces containing galactose is sugar-specific, requires Ca+2, and occurs only above a critical concentration of sugar in the substratum [Weigel et al., 1979, J. Biol. Chem., 254, 10,830). Binding is completely inhibited by asialo-orosomucoid but not by orosomucoid or asialo- agalacto-orosomucoid, suggesting that cell binding is mediated by asialoglycoprotein receptors. Asialo-orosomucoid was labeled with fluorescein isothiocyanate and used as a direct fluorescent probe to monitor the distribution of cell surface asialoglycoprotein receptors before and after hepatocyte binding to galactoside or control substrata. Cells bound at 37 degrees C were de-adhered at 4 degrees C using the Ca+2 chelator EGTA. The released cells were then stained with fluorescein-asialo-orosomucoid, fixed, washed, and examined by fluorescence microscopy. On freshly isolated cells before binding, the distribution of asialoglycoprotein receptors appears diffuse and nonclustered. However, more than half of the cells released intact from a galactoside surface had a single large (4 micrometer2) fluorescent patch. The receptor patch cannot be detected on cells while they are bound to a galactoside surface but rather only on released cells, indicating that the cell-substratum junction is the site of the receptor patch. No asialoglycoprotein receptor patches (less than or equal to 1%) were observed on cells that were incubated on, but did not bind to, an underivatized polyacrylamide surface or to a surface with a galactose concentration below the critical concentration for binding. Furthermore, no receptor patches were present on cells that had bound to and were subsequently released from substrata that did not contain galactose, including glass, tissue culture plastic, nontissue culture plastic, and collagen. The distribution of asialoglycoprotein receptors is preserved at 4 degrees C because at 37 degrees C the patches disappear with a half-life of approximately 2.6 min. The results directly demonstrate that a large cluster of asialoglycoprotein receptors mediates the binding of rat hepatocytes to a galactoside surface.  相似文献   

12.
In rat liver the asialoglycoprotein receptor is composed of three polypeptides, RHL-1, RHL-2 and RHL-3 [6]. In rat testis and spermatozoa a galactosyl receptor (RTG-r) which is immunologically related to RHL-2/3 has been described [7]. We now report that in addition to its presence in the rat, an antigenic species of 54 kDa related to RHL-2/3 is present on rabbit, human, pig and mouse spermatozoa. Purified rabbit testis galactosyl receptor (RbTG-r) consists of two major proteins of 54 and 49 kDa, while purified rabbit liver galactose lectin consists of two major proteins of 43 and 40 kDa. In an ELISA the purified rabbit testis galactosyl receptor was shown to bind biotinylated heat solubilized rabbit zonae, while the purified liver galactose lectin did not. We conclude that one of the mammalian sperm's zona binding proteins is a galactose lectin of 54 kDa related to rat liver RHL-2/3.  相似文献   

13.
The rat liver asialoglycoprotein receptor or rat hepatic lectin (RHL) consists of two polypeptide species, a major one designated RHL-1 and a minor one designated RHL-2/3, which exists in two differentially glycosylated forms. We have studied the biosynthesis, targeting, and function of the different forms after transfection of their cDNAs into the polarized Madin-Darby canine kidney cell line. In cells expressing only RHL-1, newly synthesized protein undergoes rapid intracellular degradation and is not detected at the cell surface. In contrast, RHL-2/3 when transfected alone is much more stable and is expressed at the basolateral surface of fiber-grown cells. When both forms are expressed together, newly synthesized RHL-1 escapes rapid degradation and is detected at the basolateral surface. In double transfectants a functional receptor is formed that specifically endocytoses and degrades ligand at the basolateral side.  相似文献   

14.
15.
K G Rice  R G Wu  L Brand  Y C Lee 《Biochemistry》1991,30(27):6646-6655
Three geometric isomers of a single triantennary glycopeptide, each containing two fluorophores attached to terminal positions in the molecule, were used to probe distance and flexibility of the oligosaccharide in solution. A dansyl group (energy acceptor) was attached to the C6 of Gal at either position 6', 6, or 8, and a naphthyl-2-acetyl group (energy donor) was coupled to the N terminus of the Ala-Asn peptide. (formula; see text) Resonance energy-transfer measurements revealed an average distance of approximately 22, 18, and 17 A between the donor and the acceptor attached to either the 6, 8, or 6' Gal residue, respectively. The lifetime of the donor's emission was nearly a single-exponential decay of 27 ns (96%), whereas the decay of the donor with proximally attached acceptor was fit by nonlinear least-squares analysis to a multiexponential for each glycopeptide probe. Fitting with a Lorentzian function revealed spatially distinct donor/acceptor distances presumably arising from glycopeptide branch flexibility. The results suggest that the acceptor located at Gal 8 is the most rigid relative to the donor with a single population of distances centered at 18.4 A. In contrast, the acceptor attached to either Gal 6' or 6 displayed two populations of different distances from the donor. The Gal 6 isomer contained a major population with average donor/acceptor separation distance of 21.7 A and a minor population with average separation distance of 9.7 A. Similarly, the Gal 6' isomer showed a major population with donor/acceptor separation distance of 18.3 A and a minor population with separation distance of 11.7 A. These data support the earlier conclusions that the Man alpha(1----6)Man linkage found in the core pentasaccharide of all branched N-linked oligosaccharides is flexible. In addition, the data suggest that the branch containing Gal 6 is also flexible in the triantennary glycopeptide.  相似文献   

16.
The receptor which recognizes glycoproteins that have had their terminal sialic acids removed, thus exposing penultimate galactose residues (asialoglycoproteins), was examined for expression in rat liver during development. The level of asialoglycoprotein receptor binding activity in fetal rat livers was present in very low amounts but rose dramatically at the time of birth and reached adult levels by the second day after birth. Using immunoquantitation methods, it was found that the increased binding capacity of rat liver for asialoglycoproteins during development reflected accumulation of receptor molecules rather than activation of previously existing ones. The relative rates of synthesis of the predominant polypeptide of Mr 42,000 and the lesser abundant polypeptides of Mr 50,000 and 58,000 which comprise asialoglycoprotein receptor were found to increase in livers of fetuses near term and attain adult synthesis rates around birth. Thus, the accumulation of receptor protein molecules during development reflected increased synthesis of receptor polypeptides. These results suggest that the different gene products which code for the three forms of the receptor are coordinately expressed during development. Copurifying with asialoglycoprotein receptor during ligand affinity chromatography were polypeptides of Mr 25,000 and 27,000. These polypeptides display several characteristics similar to hepatic mannose binding lectin described by others. Onset of synthesis of the mannose binding lectin during development was analogous to asialoglycoprotein receptor but, in contrast, did not reach adult synthesis rates immediately after birth.  相似文献   

17.
Profiling of the four known galactose-binding receptors in the C-type lectin family has been undertaken in parallel on a glycan array. The results are generally consistent with those of previous assays using various different formats, but they provide a direct comparison of the properties of the four receptors, revealing that they fall into two distinct groups. The major subunit of the rat asialoglycoprotein receptor and the rat Kupffer cell receptor show similar broad preferences for GalNAc-terminated glycans, while the rat macrophage galactose lectin and the human scavenger receptor C-type lectin (SRCL) bind more restricted sets of glycans. Both of these receptors bind to Lewis x-type structures, but the macrophage galactose lectin also interacts strongly with biantennary galactose- and GalNAc-terminated glycans. Although the similar glycan-binding profiles for the asialoglycoprotein receptor and the Kupffer cell receptor might suggest that these receptors are functionally redundant, analysis of fibroblasts transfected with full-length Kupffer cell receptor reveals that they fail to endocytose glycosylated ligand.  相似文献   

18.
We have previously demonstrated that a high mannose type glycopeptide is bivalent for binding Concanavalin A (Con A) and can precipitate the lectin (Bhattacharyya L. and Brewer, C.F. (1986) Biochem. Biophys. Res. Commun. 137, 670-674). The present results show that a triantennary complex type oligosaccharide containing nonreducing terminal galactose residues can precipitate the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina indica (EIL). The interactions of the oligosaccharide with EIL was investigated by quantitative precipitin analysis. The equivalence point of the precipitin curve indicated that the glycopeptide is trivalent for EIL binding. These results indicate that each arm of the oligosaccharide can independently bind separate lectin molecules leading to precipitation of the complex. These findings are discussed in terms of the possible biological structure-function properties of complex type oligosaccharides.  相似文献   

19.
We have recently demonstrated that certain oligomannose and bisected hybrid type glycopeptides and bisected complex type oligosaccharides are bivalent for binding to concanavalin A and can precipitate the lectin [Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., & Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293; Bhattacharyya, L., Haraldsson, M., & Brewer, C.F. (1987) J. Biol. Chem. 262, 1294-1299]. The present results show that tri- and tetraantennary complex type oligosaccharides containing nonreducing terminal galactose residues, and a related triantennary glycopeptide, precipitate the D-galactose-specific lectins from Ricinus communis (agglutinin I) (RCA-I), Erythrina indica (EIL), Erythrina arborescens (EAL), and Glycine max (soybean) (SBA). Nonbisected and bisected biantennary complex type oligosaccharides can precipitate SBA, which is a tetrameric lectin, but not RCA-I, EIL, or EAL, which are dimeric lectins. The relative affinities of the oligosaccharides and glycopeptide were determined by hemagglutination inhibition measurements and their valencies by quantitative precipitin analyses. The equivalence points of the precipitin curves indicate that the tri- and tetraantennary oligosaccharides are tri- and tetravalent, respectively, for EIL, EAL, and SBA binding. However, the oligosaccharides are all trivalent for RCA-I binding due apparently to the larger size of the monomeric subunit of the lectin. The triantennary glycopeptide was also trivalent for RCA-I and EIL binding. Biantennary oligosaccharides with adequate chain lengths were found to be bivalent for binding to SBA; those with shorter chains did not precipitate the lectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rat hepatic asialoglycoprotein receptors (ASGP-Rs) bind terminalclustered galactosyl or N-acetylgalactosaminyl residues withhigh affinity. The affinity-purified ASGP-R consists of threesubunits designated RHL1, RHL2, and RHL3. The ligand-bindingactivity of individual subunits was investigated by ligand blotting,after separation of subunits by SDS-PAGE under nonreducing conditions,electrotransfer to nitrocellulose, and incubation with 125I-asialo-orosomucoid(ASOR). No ligand-binding to any subunits could be detectedwhen proteins such as BSA, casein, gelatin, or fat-free drymilk were used as blocking agents. However, subsequent incubationof BSA-blocked nitrocellulose blots with some nonionic detergentsresulted in renaturation of RHL1. 125I-ASOR-binding to RHL2or RHL3 was weaker and could be detected only after longer exposure.Similarly, direct use of detergents such as Tween 20, NonidetP-40, or Triton X-100 as blocking agents also preserved theASOR-binding activity of RHL1. Ionic detergents tested did notshow any ability to renature the ligand-binding activity ofRHL subunits. Among nonionic detergents tested, Tween 20, Tween85, Lubrol PX, Nonidet P-40, and Triton X-100 were more effectivethan Tween 40, Tween 65, Tween 80, or Brij 35, whereas SPAN,digito-nin, or octyl-glucoside showed no effect. Weak 125I-ASORbinding to RHL2 or RHL3 could be detected only when the Tweenseries or Lubrol PX were used. Incubation of blots with dithiothreitolcaused a dose-dependent loss of binding activity. The carbohydraterecognition domain (CRD) of RHL1, isolated after subtilisindigestion of ASGP-R bound to ASOR-Sepharose, retained ligand-bindingactivity as assessed by its binding to ASOR-Sepharose and byligand blotting. 125I-ASOR binding to electroblotted CRD afterSDS-PAGE was also dependent on the presence of nonionic detergents.We conclude that restoration of ligand-binding activity of RHL1after SDS-PAGE by some nonionic detergents is not dependenton the presence of the cytoplasmic, transmembrane, or stalkdomains of this subunit. asialoglycoprotein receptor Ligand blotting detergent renaturation RHL1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号