首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutathione S -transferases (GSTs) play a pivotal role in the detoxification of foreign chemicals and toxic metabolites. They were originally termed ligandins because of their ability to bind large molecules (molecular masses >400 Da), possibly for storage and transport roles. The location of the ligandin site in mammalian GSTs is still uncertain despite numerous studies in recent years. Here we show by X-ray crystallography that the ligandin binding site in human pi class GST P1-1 occupies part of one of the substrate binding sites. This work has been extended to the determination of a number of enzyme complex crystal structures which show that very large ligands are readily accommodated into this substrate binding site and in all, but one case, causes no significant movement of protein side-chains. Some of these molecules make use of a hitherto undescribed binding site located in a surface pocket of the enzyme. This site is conserved in most, but not all, classes of GSTs suggesting it may play an important functional role.  相似文献   

2.
The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase B (YaYc) and two other transferases that are homodimers of the individual Ya and Yc subunits were purified from rat liver. Inhibition of these three enzymes by Indocyanine Green, biliverdin and several bile acids was investigated at different values of pH (range 6.0-8.0). Indocyanine Green, biliverdin and chenodeoxycholate were found to be effective inhibitors of transferases YaYc and YcYc at low (pH 6.0) but not high (pH 8.0) values of pH. Between these extremes of pH intermediate degrees of inhibition were observed. Cholate and taurochenodeoxycholate, however, were ineffective inhibitors of transferase YcYc at all values of pH. The observed differences in bile acids appeared to be due, in part, to differences in their state of ionization. In contrast with the above results, transferase YaYa was inhibited by at least 80% by the non-substrate ligands at all values of pH. These effects of pH on the three transferases could not be accounted for by pH-induced changes in the enzyme's affinity for the inhibitor. Thus those glutathione S-transferases that contain the Yc subunit are able to act simultaneously as both enzymes and binding proteins. In addition to enzyme structure, the state of ionization of the non-substrate ligands may also influence whether the transferases can perform both functions simultaneously.  相似文献   

3.
A novel outer mitochondrial membrane protein containing [2Fe-2S] clusters, mitoNEET was first identified through its binding to the anti-diabetic drug pioglitazone. Pioglitazone belongs to a family of drugs that are peroxisome proliferator-activated receptor (PPAR) gamma agonists, collectively known as glitazones. With the lack of pharmacological tools available to fully elucidate mitoNEET's function, we developed a binding assay to probe the glitazone binding site with the aim of developing selective and high affinity compounds. We used multiple thiazolidine-2,4-dione (TZD), 2-thioxothiazolidin-4-one (TTD), and 2-iminothiazolidin-4-one (ITD) compounds to establish several trends to enhance ligand development for the purpose of elucidating mitoNEET function.  相似文献   

4.
Circular dichroism methods were used to study the structure of rat ligandin and the binding of organic anions to the protein. Ligandin has a highly ordered secondary structure with about 40%alpha helix, 15% beta structure, and 45% random coil. Bilirubin binding occurred primarily at a single high affinity site on the protein. The binding constant for bilirubin (5 X 10-7 Mminus 1) was the highest among the ligands studied. The bilirubin-ligandin complex exhibited a well-defined circular dichroic spectrum with two major overlapping ellipticity bands of opposite sign in the bilirubin absorption region. This spectrum was virtually a mirror image of that of human or rat serum albumin-bilirubin complexes. Studies on the direct transfer of bilirubin from ligandin to rat serum albumin showed that sasociation constants of bilirubin-ligandin complexes were approximately tenfold less than those of the bilirubin-albumin system. Ligandin exhibited a broad specificity with respect to the typeof ligand bond. A series of organic anions inclucing dyes used clinically for liver function tests, fatty acids, hormones, heme derivatives, bile acids, and other ligands that were considered likely to interact with ligandin, were examined. Most induced ellipticity changes consistent with competitive displacement of bilirubin from ligandin and relative affinities of these compounds for ligandin were determined based on their effectiveness in desplacing the bilirubin. Some substances such as glutathione, conjugated sulfobromophthaleins and lithocholic acid bound to ligandin but induced anomalous spectral shifts, when added to ligandin-bilirubin complexes. Other compounds, including some that act as substrates for the glutathione transferase activity exhibited by ligandin, revealed no apparent competitive effects with respect to the bilitubin binding site.  相似文献   

5.
To examine if, as has been suggested, a peculiar proteolytic activity of thymus cell lysates might explain failures to detect immunoglobulin (Ig) biosynthesis by thymus cells, lysates of 14C leucine labelled mouse myeloma cells were incubated with a 103 excess of unlabelled mouse thymus or spleen cell lysates, and then submitted to immune precipitation to isolate labelled Ig chains. Analysis of the immune precipitates by SDS polyacrylamide gel electrophoresis followed by radioautography failed to provide evidence for the purported proteolytic activity of the thymus cell lysates. Furthermore, thymus cell suspensions uncontaminated by plasma cells were biosynthetically labelled, then lysed in the presence or absence of Trasylol, an inhibitor of trypsin-like protesses. No labelled Ig chains could be detected under either condition of cell lysis. Evidence is presented that the detection of Ig chains synthesized by thymus cell suspensions might result from the contamination of these suspensions by plasma cells.  相似文献   

6.
7.
Cancer is a major cause of mortality in developed countries, following only cardiovascular diseases. Death of cancerous cells can be achieved by stopping mitosis and the antimitotic class of drugs formed by the spindle poisons can be used for this purpose. Their role is to disorganize the mitotic spindle by targeting its main constituent, the microtubules, themselves made of heterodimers of alpha and beta-tubulin. They disrupt the dynamics of the microtubules either by stabilizing them, as do paclitaxel or epothilones, or destabilizing them, as do colchicine. The binding site of colchicine seems to lie between the two units of the tubulin dimer. Here, we report on the characterization of this site by the docking of a series of reference compounds, and the subsequent docking of ligands prepared in our laboratory.  相似文献   

8.
Formyl-CoA transferase catalyses transfer of CoA from formate to oxalate in the first step of oxalate degradation by Oxalobacter formigenes, a bacterium present in the intestinal flora which is implicated in oxalate catabolism in mammals. Formyl-CoA transferase is a member of a family of CoA-transferases for which no structural information is available. We now report the three-dimensional structure of O.formigenes formyl-CoA transferase, which reveals a novel fold and a very striking assembly of the homodimer. The subunit is composed of a large and a small domain where residues from both the N- and C-termini of the subunit are part of the large domain. The linkers between the domains give the subunit a circular shape with a hole in the middle. The enzyme monomers are tightly interacting and are interlocked. This fold requires drastic rearrangement of approximately 75 residues at the C-terminus for formation of the dimer. The structure of a complex of formyl-CoA transferase with CoA is also reported and sets the scene for a mechanistic understanding of enzymes of this family of CoA-transferases.  相似文献   

9.
As part of a drug discovery program using high-throughput radioligand-binding assays, aminoanthraquinones were identified as potential modulators of N-methyl-D-aspartate (NMDA) receptor function. Aminoanthraquinones may represent a novel class of polyamine binding site ligands with a unique pharmacophore and may facilitate the rational design of novel NMDA-receptor modulators.  相似文献   

10.
  • 1.1. Displaceable (specific) binding of three ([3H]α-dihydropicrotoxinin, [3H]n-propylbicyclophosphate and [35S]t-butylbicyclophosphorothionate) of four GABA-gated chloride channel site ligands was detected in housefly head extracts.
  • 2.2. Differences in their sensitivity to displacement by unlabeled compounds and in temperature dependence of binding suggest differences in the mode of interaction of the chloride channel site ligands with specific binding site(s).
  相似文献   

11.
Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.  相似文献   

12.
A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed on GABA(A) receptor subtypes (alpha(1)beta(3)gamma(2s), alpha(2)beta(3)gamma(2s), alpha(4)beta(3)gamma(2s) and alpha(5)beta(3)gamma(2s)), displaying nanomolar affinities as well as selectivity for alpha1- versus alpha2- and alpha3-containing receptors by a factor of between 14 and 26.  相似文献   

13.
Identification of a ligand binding site represents the starting point for a structure-based drug development program. Lack of a binding site hampers the development of improved ligands that modulate the protein of interest. In this letter, we describe the development of chemical tools that will allow for elucidation of the Hsp90 C-terminal ligand binding site. Our strategy is based on the preparation of paramagnetic analogs of KU-596, an investigational new drug that is currently undergoing clinical trials for the treatment of neuropathy and interacts with the Hsp90 C-terminal domain. In particular, we report the design and synthesis of three novel paramagnetic analogs of KU-596, which will be used to obtain long range distances for NMR structural studies of Hsp90 in complex with C-terminal ligands.  相似文献   

14.
The cleavage of L-leucyl-L-tyrosyl amide by penicillopepsin is activated about tenfold by L-leucyl-glycyl-L-leucine. The latter is not a substrate. The activator has no effect on KM. An activation constant KA = 2.0 ± 0.6 mM has been calculated. Leucyl-glycyl-leucine also affects four bands of the circular dichroism spectrum of the enzyme. A dissociation constant of 2.4 mM has been calculated from a titration of the ellipticity changes. The results suggest that a conformational change caused by binding of the peptide is responsible for the increased catalytic activity.  相似文献   

15.
The 26-kDa glutathione S-transferase from Schistosoma japonicum (Sj26GST), a helminth worm that causes schistosomiasis, catalyzes the conjugation of glutathione with toxic secondary products of membrane lipid peroxidation. Crystal structures of Sj26GST in complex with glutathione sulfonate (Sj26GSTSLF), S-hexyl glutathione (Sj26GSTHEX), and S-2-iodobenzyl glutathione (Sj26GSTIBZ) allow characterization of the electrophile binding site (H site) of Sj26GST. The S-hexyl and S-2-iodobenzyl moieties of these product analogs bind in a pocket defined by side-chains from the beta1-alpha1 loop (Tyr7, Trp8, Ile10, Gly12, Leu13), helix alpha4 (Arg103, Tyr104, Ser107, Tyr111), and the C-terminal coil (Gln204, Gly205, Trp206, Gln207). Changes in the Ser107 and Gln204 dihedral angles make the H site more hydrophobic in the Sj26GSTHEX complex relative to the ligand-free structure. These structures, together with docking studies, indicate a possible binding mode of Sj26GST to its physiologic substrates 4-hydroxynon-2-enal (4HNE), trans-non-2-enal (NE), and ethacrynic acid (EA). In this binding mode, hydrogen bonds of Tyr111 and Gln207 to the carbonyl oxygen atoms of 4HNE, NE, and EA could orient the substrates and enhance their electrophilicity to promote conjugation with glutathione.  相似文献   

16.
The interaction of co-stimulatory molecules on T cells with B7 molecules on antigen presenting cells plays an important role in the activation of naive T cells. Consequently, agents that disrupt these interactions should have applications in treatment of transplant rejection as well as autoimmune diseases. To this end, specific small molecule inhibitors of human B7.1 were identified and characterized. These compounds inhibit the binding of B7.1 to both CD28 and CTLA4. Both classes of compounds appear to bind the same site, a relatively small portion of the GFCC'C" face of the N-terminal V-set domain of human B7.1, not present in the homologous B7.2 or even mouse B7.1. This site may represent a rare hot spot for small molecule antagonist design of inhibitors of cell-cell interactions, whose ligands may yield leads for the development of novel immunomodulatory medicines.  相似文献   

17.
18.
New compounds have been synthesized based on the structure of the anti-tumoral drug tamoxifen and its diphenylmethane derivative, N,N-diethyl-2-[(4-phenyl-methyl)-phenoxy]-ethanamine, HCl (DPPE). These new compounds have no affinity for the estrogen receptor (ER) and bind with various affinity to the anti-estrogen binding site (AEBS). Compounds 2, 10, 12, 13, 20a, 20b, 23a, 23b, 29 exhibited 1.1-69.5 higher affinity than DPPE, and compounds 23a and 23b have 1.2 and 3.5 higher affinity than tamoxifen. Three-dimensional structure analysis, performed using the intersection of the van der Waals volume occupied by tamoxifen in its crystallographic state and the van der Waals volume of these new compounds in their calculated minimal energy conformation, correlated well with their pKi for AEBS (r = 0.84, P<0.0001, n = 18). This is the first structure-affinity relationship (SAR) ever reported for AEBS ligands. Moreover in this study we have reported the synthesis of new compounds of higher affinity than the lead compounds and that are highly specific for AEBS. Since these compounds do not bind ER they will be helpful to study AEBS mediated cytotoxicity. Moreover our study shows that our strategy is a new useful guide to design high affinity and selective ligands for AEBS.  相似文献   

19.
DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site.  相似文献   

20.
Z Vali  H A Scheraga 《Biochemistry》1988,27(6):1956-1963
Affinity chromatography of active site inhibited thrombin on immobilized fragments derived from the central (desAB-NDSK) and terminal (D1) globular domains of fibrinogen revealed that the site responsible for the binding of thrombin at its secondary fibrin binding site is located in the central domain. Chromatography of various domains of the central nodule (desAB-NDSK, fibrinogen E, and fibrin E) having nonidentical amino acid sequences showed that all of these fragments are capable of binding to PMSF-thrombin-Sepharose, suggesting that the thrombin binding site resides within the peptide regions common to all of these fragments: alpha(Gly17-Met51), beta(Val55-Met118), and gamma(Tyr1-Lys53). Competitive affinity chromatography of the same binding domains revealed that there is no detectable difference in their binding constants to PMSF-thrombin-Sepharose, indicating that the alpha(Lys52-Lys78), beta(Gly15-Lys54)/(Tyr119-Lys122), and gamma(Thr54-Met78) peptide segments do not contribute significantly to the binding of thrombin. Chromatography of the isolated chains of fibrinogen E showed that the alpha(Gly17-Lys78) peptide region itself contains a strong binding site for PMSF-thrombin-Sepharose. The location of the binding site suggests that the secondary site interaction may play an important role in determining the cleavage specificity of thrombin on fibrinogen and can affect the rate of release of the fibrinopeptides. Affinity chromatography of fragments prepared from polymerized fibrin showed that cross-linked DD (D x D) itself does not bind to thrombin, whereas the D x DE complex remained attached to the column, suggesting that the binding site on fragment E for thrombin is distinct from its binding site for D x D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号