首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The omega subunit of Escherichia coli RNA polymerase, consisting of 90 amino acids, is present in stoichiometric amounts per molecule of core RNA polymerase (alpha2betabeta'). The presence of omega is necessary to restore denatured RNA polymerase in vitro to its fully functional form, and, in an omega-less strain of E. coli, GroEL appears to substitute for omega in the maturation of RNA polymerase. The X-ray structure of Thermus aquaticus core RNA polymerase suggests that two regions of omega latch on to beta' at its N-terminus and C-terminus. We show here that omega binds only the intact beta' subunit and not the beta' N-terminal domain or beta' C-terminal domain, implying that omega binding requires both these regions of beta'. We further show that omega can prevent the aggregation of beta' during its renaturation in vitro and that a V8-protease-resistant 52-amino-acid-long N-terminal domain of omega is sufficient for binding and renaturation of beta'. CD and functional assays show that this N-terminal fragment retains the structure of native omega and is able to enhance the reconstitution of core RNA polymerase. Reconstitution of core RNA polymerase from its individual subunits proceeds according to the steps alpha + alpha --> alpha2 + beta --> alpha2beta + beta' --> alpha2betabeta'. It is shown here that omega participates during the last stage of enzyme assembly when beta' associates with the alpha2beta subassembly.  相似文献   

2.
3.
4.
5.
The DNA-dependent RNA polymerase was purified from Rickettsia prowazekii, an obligate intracellular bacterial parasite. Because of limitation of available rickettsiae, the classical methods for isolation of the enzyme from other procaryotes were modified to purify RNA polymerase from small quantities of cells (25 mg of protein). The subunit composition of the rickettsial RNA polymerase was typical of a eubacterial RNA polymerase. R. prowazekii had beta' (148,000 daltons), beta (142,000 daltons), sigma (85,000 daltons), and alpha (34,500 daltons) subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The appropriate subunits of the rickettsial RNA polymerase bound to polyclonal antisera against Escherichia coli core polymerase and E. coli sigma 70 subunit in Western blots (immunoblots). The enzyme activity was dependent on all four ribonucleoside triphosphates, Mg2+, and a DNA template. Optimal activity occurred in the presence of 10 mM MgCl2 and 50 mM NaCl. Interestingly, in striking contrast to E. coli, approximately 74% of the rickettsial RNA polymerase activity was associated with the rickettsial cell membrane at a low salt concentration (50 mM NaCl) and dissociated from the membrane at a high salt concentration (600 mM NaCl).  相似文献   

6.
7.
8.
9.
10.
The "host shutoff" function of bacteriophage T7 involves an inactivation of the host Escherichia coli RNA polymerase by an inhibitor protein bound to the enzyme. When this inhibitor protein, termed I protein, was removed from the inactive RNA polymerase complex prepared from T7-infected cells by glycerol gradient centrifugation in the presence of 1 M KCl, the enzyme recovered its activity equivalent to about 70 to 80% of the activity of the enzyme from uninfected cells. Analysis of the activity of E. coli RNA polymerase from E. coli cells infected with various T7 mutant phages indicated that the T7 gene 2 codes for the inhibitor I protein. The activity of E. coli RNA polymerase from gene 2 mutant phage-infected cells, which was about 70% of that from uninfected cells, did not increase after glycerol gradient centrifugation in the presence of 1 M KCl, indicating that the salt-removable inhibitor was not present with the enzyme. It was found that the reduction in E. coli RNA polymerase activity in cells infected with T7(+) or gene 2 mutant phage, i.e., about 70% of the activity of the enzyme compared to that from uninfected cells after glycerol gradient centrifugation in the presence of 1 M KCl, results from the function of T7 gene 0.7. E. coli RNA polymerase from gene 0.7 mutant phage-infected cells was inactive but recovered a full activity equivalent to that from uninfected cells after removal of the inhibitor I protein with 1 M KCl. E. coli RNA polymerase from the cells infected with newly constructed mutant phages having mutations in both gene 2 and gene 0.7 retained the full activity equivalent to that from uninfected cells with or without treatment of the enzyme with 1 M KCl. From these results, we conclude that both gene 2 and gene 0.7 of T7 are involved in accomplishing complete shutoff of the host E. coli RNA polymerase activity in T7 infection.  相似文献   

11.
A Pich  H Bahl 《Journal of bacteriology》1991,173(6):2120-2124
The DNA-dependent RNA polymerase (EC 2.7.7.6) from Clostridium acetobutylicum DSM 1731 has been purified to homogeneity and characterized. The purified enzyme was composed of four subunits and had a molecular mass of 370,000 Da. Western immunoblot analysis with polyclonal antibodies against the sigma 70 subunit of Escherichia coli RNA polymerase identified the 46,000-Da subunit as an immunologically and probably functionally related protein. The other three subunits of 128,000, 117,000, and 42,000 Da are tentatively analogous to the beta, beta', and alpha subunits, respectively, of other eubacterial RNA polymerases. The RNA polymerase activity was completely dependent on Mg2+, nucleoside triphosphates, and a DNA template. The presence of Mg2+ or Mn2+ in buffers used for purification or storage caused irreversible inactivation of the RNA polymerase.  相似文献   

12.
We describe a new method for quantitatively assaying the omega subunit of Escherichia coli RNA polymerase. The assay is based on the ability of RNA polymerase holoenzyme to catalyze the continuous synthesis of the dinucleotide pApU on a poly[d(A-T)] . poly[d(A-T)] template when supplied with AMP and UTP as substrates. Core enzyme, lacking omega subunit, catalyzed this reaction at a rate less than 1% that of holoenzyme. The omega subunit was not released from the enzyme/DNA complex during dinucleotide synthesis. Using this assay, a titration of a fixed concentration of core enzyme was observed with increasing concentrations of added omega subunit. Below a 1:1 omega:core ratio the measured activity increased linearly with omega concentration, whereas above a 1:1 ratio the activity remained constant. An immediate application of the assay is in determining the concentration of active omega, or equivalently of active holoenzyme, in any RNA polymerase preparation.  相似文献   

13.
14.
15.
Three Caulobacter crescentus heat-shock proteins were shown to be immunologically related to the Escherichia coli heat-shock proteins GroEL, Lon and DnaK. A fourth heat-shock protein was detected with antibody to the C. crescentus RNA polymerase. This 37,000 Mr heat-shock protein might be related to the E. coli 32,000 Mr heat-shock sigma subunit. The synthesis of the major C. crescentus RNA polymerase sigma factor was not induced by heat shock. The E. coli GroEL protein and the related protein from C. crescentus were also induced by treatment with hydrogen peroxide. Like some of the proteins in the heat-shock protein families of Drosophila and yeast, the four heat-shock proteins in C. crescentus were found to be regulated developmentally under normal conditions. All four proteins were synthesized in the predivisional cell, but the progeny showed cell type-specific bias in the level of enhanced synthesis after heat shock. The 92,000 Mr Lon homolog and the 37,000 Mr RNA polymerase subunit were preferentially synthesized in the stalked cell, whereas the synthesis of the 62,000 Mr GroEL homolog was enhanced in the progeny swarmer cell. Furthermore, the four heat-shock proteins synthesized in the predivisional cell were partitioned in a specific manner upon cell division. The stalked cell, which initiates chromosome replication immediately upon division, received the Lon homolog, the DnaK homolog and the 37,000 Mr RNA polymerase subunit. The GroEL homolog, however, was distributed equally to both the stalked cell and the swarmer cell. These results provide access to the functions of C. crescentus heat-shock proteins under both normal and stress conditions. They also allow an investigation of the regulatory signals that modulate the asymmetric distribution of proteins and their subsequent cell type-specific expression in the initial stages of a developmental program.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号