首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
辣根过氧化物酶的热稳定剂   总被引:1,自引:1,他引:1  
保持酶的天然状态和高催化特性具有重要的意义。本研究筛选了辣根过氧化物酶(HRP)的稳定剂并研究了其作用机制。结果发现硫酸镁和明胶能够显著提高HRP的热稳定性,并且两者具有协同作用。在硫酸镁和明胶组成的酶稳定剂存在的条件下,HRP在50oC保温80h后仍能保持89%的活性,常温下存放90d后可保持57%的活性,而未加稳定剂的对照样品中HRP的残留活性分别为6%和小于1%。通过对HRP的Soret带吸收光谱,色氨酸内源荧光,ANS荧光进行分析,揭示酶稳定剂可以明显降低在加热条件下HRP的变性程度,从而维持较为稳定的天然构象。  相似文献   

2.
We report here on the stereospecificity observed in the action of horseradish peroxidase (HRPC) on monophenol and diphenol substrates. Several enantiomers of monophenols and o-diphenols were assayed: L-tyrosinol, D-tyrosinol, L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, DL-alpha-methyldopa, DL-adrenaline, D-adrenaline, L-isoproterenol, DL-isoproterenol and D-isoproterenol. The electronic density at the carbon atoms in the C-1 and C-2 positions of the benzene ring were determined by NMR assays (delta1 and delta2). This value is related to the nucleophilic power of the oxygen atom of the hydroxyl groups and to its oxidation-reduction capacity. The spatial orientation of the ring substituents resulted in lower Km values for L- than for D-isomers. The kcat values for substrates capable of saturating the enzyme were lower for D- than for L-isomers, although both have the same delta1 and delta2 NMR values for carbons C-1 and C-2, and therefore the same oxidation-reduction potential. In the case of substrates that cannot saturate the enzyme, the values of the binding constant for compound II (an intermediate in the catalytic cycle) followed the order: L-isomer>DL-isomer>D-isomer. Therefore, horseradish peroxidase showed stereospecificity in its affinity toward its substrates (K m) and in their transformation reaction rates (k cat).  相似文献   

3.
Resonance Raman enhancement of derivatives and intermediates of horseradish peroxidase in the near ultraviolet (N-band excitation) results in intensity and enhancement patterns that are different from those normally observed within the porphyrin Soret (B-band) and alpha-beta (Q-band) absorptions. In particular it allows the resolution of resonance Raman spectra of horseradish peroxidase compound I. The bands above 1300 cm-1 can be assigned to porphyrin vibrational modes that are characteristically shifted in frequency due to removal of an electron from the porphyrin ring. The resonance Raman frequency shifts follow normal mode compositions. Relative to resonance Raman spectra of compound II, the v4 frequency (primarily Ca-N) exhibits a 20 cm-1 downshift. The v2, v11, and v37 vibrational frequencies whose mode compositions are primarily porphyrin Cb-Cb, exhibit 10-20 cm-1 upshifts. The v3, v10, and v28 frequencies, whose mode compositions are primarily Ca-Cm, exhibit downshifts. The downshifts for v3 and v10 are small, 3-5 cm-1; however, the downshift for v28 is 14 cm-1. These frequency shifts are consistent with those of previously published resonance Raman studies of model compounds. In contrast to reports from other laboratories, the data presented here for horseradish peroxidase compound I can be attributed unambiguously to resonance Raman scattering from a porphyrin pi-cation radical.  相似文献   

4.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A.  相似文献   

5.
6.
Wound-induced expression of horseradish peroxidase   总被引:1,自引:0,他引:1  
Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the -glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.Abbreviations HRP horseradish peroxidase - prx gene for peroxidase - GUS -glucuronidase - CaMV cauliflower mosaic virus  相似文献   

7.
Lignosulfonates(LSs), by-products from chemical pulping processes, are low-value products with limited dispersion properties. The ability of commercially available horseradish peroxidase (HRP) to polymerize LS macromolecules and improve the dispersion properties of LSs was investigated. The polymerization of LSs proceeded efficiently under mild reaction conditions in an aqueous solution with HRP/H2O2. Gel permeation chromatography showed a significant increase in weight-average molecular weight (M w ) of sulfonated kraft lignin and sodium lignosulfonate (NaLS) by 8.5-fold and 4.7-fold, respectively. The mechanism of polymerization was investigated by elemental analysis, surface charge measurement, headspace gas chromatography, infrared spectroscopy (IR), and hydrogen nuclear magnetic resonance spectrometry (1H-NMR). The functional group measurements indicated that HRP incubation did not reduce the sulfonic group content. However, it decreased the phenolic and methoxyl group contents. As the phenolic group content decreased, M w increased as a power function. The polymerization was proposed to involve the random coupling of phenoxy radical intermediates. The radicals coupled with each other to form different inter-unit linkages, most of which were the β-O-4’ type, as the 1H-NMR spectra indicated. Moreover, the HRP/H2O2 incubation induced a significant improvement in the adsorption and dispersion properties of LSs. Therefore, the HRP/H2O2 incubation is a promising approach for industrial applications of LSs.  相似文献   

8.
Peroxidases catalyze many reactions, the most common being the utilization of H2O2 to oxidize numerous substrates (peroxidative mode). Peroxidases have also been proposed to produce H2O2 via utilization of NAD(P)H, thus providing oxidant either for the first step of lignification or for the "oxidative burst" associated with plant-pathogen interactions. The current study with horseradish peroxidase characterizes a third type of peroxidase activity that mimics the action of catalase; molecular oxygen is produced at the expense of H2O2 in the absence of other reactants. The oxygen production and H2O2-scavenging activities had temperature coefficients, Q10, of nearly 3 and 2, which is consistent with enzymatic reactions. Both activities were inhibited by autoclaving the enzyme and both activities had fairly broad pH optima in the neutral-to-alkaline region. The apparent Km values for the oxygen production and H2O2-scavenging reactions were near 1.0 mM H2O2. Irreversible inactivation of horseradish peroxidase by exposure to high concentrations of H2O2 coincided with the formation of an absorbance peak at 670 nm. Addition of superoxide dismutase (SOD) to reaction mixtures accelerated the reaction, suggesting that superoxide intermediates were involved. It appears that horseradish peroxidase is capable of using H2O2 both as an oxidant and as a reductant. A model is proposed and the relevance of the mechanism in plant-bacterial systems is discussed.  相似文献   

9.
Conditions for copolymerization of native and sodium periodate-oxidized horseradish peroxidase (HTP; EC 1.11.1.7) have been optimized. Copolymerization products have been characterized electrophoretically, spectrally, and kinetically. Copolymers containing 2-3, 4, 5-7, and 9-10 molecules of the enzyme were found among the products of polymerization. The copolymers had lower values of D403/D280 than HRP. The copolymers had more ordered structures than the original HRP. Comparison of the thermal stability and kinetic characteristics of the fractions differing in the ratio of copolymers to the monomeric enzyme demonstrated that the polymeric products were more stable than HRP (in terms of resistance to high temperature or inhibitory effects of H202), but their kinetic activity was, on the whole, lower than that of the original enzyme.  相似文献   

10.
Addition of NADH inhibited the peroxidative loss of scopoletin in presence of horseradish and H2O2 and decreased the ratio of scopoletin (consumed):H2O2 (added). Concomitantly NADH was oxidized and oxygen was consumed with a stoichiometry of NADH:O2 of 2:1. On step-wise addition of a small concentration of H2O2 a high rate of NADH oxidation was obtained for a progressively decreasing time period followed by termination of the reaction with NADH:H2O2 ratio decreasing from about 40 to 10. The rate of NADH oxidation increased linearly with increase in scopoletin concentration. Other phenolic compounds including p-coumarate also supported this reaction to a variable degree. A 418-nm absorbing compound accumulated during oxidation of NADH. The effectiveness of a small concentration of H2O2 in supporting NADH oxidation increased in presence of SOD and decreased in presence of cytochrome c, but the reaction terminated even in their presence. The results indicate that the peroxidase is not continuously generating H2O2 during scopoletin-mediated NADH oxidation and that both peroxidase and oxidase reactions occur simultaneously competing for an active form of the enzyme.  相似文献   

11.
12.
Free base and Pd porphyrin derivatives of horseradish peroxidase show long-lived excited states that are quenched by the presence of the peroxidase inhibitor, benzhydroxamic acid. The relaxation times of the excited-state luminescence and the rates of the quenching reaction for these derivatives of peroxidase were monitored as a function of pH, temperature, and viscosity with the view of examining how protein dynamics affect the quenching reaction. As solvent viscosity increases, the rate decreases, but at the limit of very high viscosity (i.e., high glycerol or sugar glass) the quenching still occurs. A model is presented that is consistent with the known structure of the enzyme-inhibitor complex. It is considered that the inhibitor is held at an established position but that solvent-dependent and independent motions allow a limited diffusion of the two reactants. Since there is a steep dependence upon distance and orientation, the diffusion toward the favorable position for reaction enhances the reaction rate. The solvent viscosity dependent and independent effects were separated and analyzed. The importance of internal reaction dynamics is demonstrated in the observation that rigidity of solvent imposed by incorporating the protein into glass at room temperature allows the reaction to occur, while the reaction is inhibited at low temperature. The results emphasize that protein dynamics plays a role in determining reaction rates.  相似文献   

13.
Summary Two-dimensional (2D) proton NMR correlation spectroscopy, COSY, and nuclear Overhauser spectroscopy, NOESY, have been used to explore the applicability of these methods for the moderately large (42 KDa), paramagnetic cyanide-inhibited derivative of horseradish peroxidase, HRP-CN. The target resonances are those in the active site of HRP-CN which experience substantial hyperfine shifts and paramagnetic relaxation. The magnitude COSY experiment was found to yield cross peaks for all known spin-coupled heme substituents, as well as for the majority of non-heme hyperfine shifted protons, in spite of line widths of the order of 100 Hz. Moreover, the rapid relaxation of the hyperfine-shifted resonances allows the extremely rapid collection of useful 2D NMR data sets without the loss of information. For the heme, the combination of COSY cross peaks for the vinyl and propionate substituents, and NOESY cross peaks among these substituent protons and heme methyls, allows assignment of heme resonances without recourse to deuterium labeling of the heme. A seven-proton coupled spin system was identified in the upfield region that is consistent with originating from the proposed catalytic Arg38 residue in the distal heme pocket, with orientation relative to the heme similar to that found in cytochromec peroxidase. The upfield hyperfine-shifted methyl group in the substrate binding pocket previously proposed to arise from Leu237 is shown to arise instead from an as yet unidentified Ile. NOESY spectra collected at very short (3 ms) and intermediate (20 ms) mixing times indicate that build-up curves can be obtained that should yield estimates of distances in the heme cavity. It is concluded that 2D NMR studies should be able to provide the heme assignments, aid in identifying the catalytic residues, and provide information on the spatial disposition of such residues in the active site for cyanide complexes of a number of intermediate to large paramagnetic heme peroxidases, as well as for other paramagnetic metalloenzymes with line widths of 100 Hz. Moreover, paramagnetic-induced hyperfine shifts and linewidths to 100 Hz need not interfere with the complete solution structure determination of a small paramagnetic protein solely on the basis of 2D NMR data.  相似文献   

14.
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.  相似文献   

15.
Conditions for copolymerization of native and sodium periodate-oxidized horseradish peroxidase (HTP; EC 1.11.1.7) have been optimized. Copolymerization products have been characterized electrophoretically, spectrally, and kinetically. Copolymers containing 2–3, 4, 5–7, and 9–10 molecules of the enzyme were found among the products of polymerization. The copolymers had lower values of D 403/D 280 than HRP. The copolymers had more ordered structures than the original HRP. Comparison of the thermal stability and kinetic characteristics of the fractions differing in the ratio of copolymers to the monomeric enzyme demonstrated that the polymeric products were more stable than HRP (in terms of resistance to high temperature or inhibitory effects of H2O2), but their kinetic activity was, on the whole, lower than that of the original enzyme.  相似文献   

16.
17.
Kaolin showed as a very perspective carrier for the enzyme immobilization and it was used for the adsorption of horseradish peroxidase (HRP). The effects of the enzyme concentration and pH on the immobilization efficiency were studied in the reaction with pyrogallol and anthraquinone dye C.I. Acid Violet 109 (AV 109). In addition, Fourier transform infrared spectroscopy, scanning electron microscopy and analysis by Brunauer–Emmett–Teller were performed for kaolin, thermally activated kaolin and the immobilized enzyme. It has been shown that 0.1 IU of HRP-kaolin decolorized 87 % of dye solution, under the optimal conditions (pH 5.0, temperature 24 °C, dye concentration 40 mg/L and 0.2 mM of H2O2) within 40 min. The immobilized HRP decolorization follows the Ping Pong Bi–Bi mechanism with dead-end inhibition by the dye. The biocatalyst retained 35 ± 0.9 % of the initial activity after seven cycles of reuse in the decolorization reaction of AV 109 under optimal conditions in a batch reactor. The obtained kinetic parameters and reusability study confirmed improvement in performances of k-HRP compared to free, indicating that k-HRP has a great potential for environmental purposes.  相似文献   

18.
Summary Unglycosylated recombinant horseradish peroxidase (HRP C*) had a half life of 21 minutes at 65°C compared with only 5 minutes for the plant enzyme (HRP). The half life of HRP C* at 65°C increased by 5-fold following modification with ethylene glycol bis(succinic acid N-hydroxysuccinimide ester). Tolerance to 60% 1,4-dioxan also increased whilst tolerance to 30% dimethylformamide was unchanged.  相似文献   

19.
Horseradish peroxidase has been shown to be a metalloprotein in which calcium contributes to the structural stability of the protein. Isoenzyme C and A contain 2.0 and 1.4 moles calcium/mole enzyme, respectively, which can be removed by treatment with guanidine hydrochloride and EDTA. Calcium-free isoenzyme C, but not isoenzyme A, reconstitutes upon addition of calcium and regains enzymatic activity. Free calcium readily exchanges with isoenzyme C, but only to a small extent with isoenzyme A. In addition the role of calcium in maintaining molecular conformation is evidenced by the effects of calcium removal from the isoenzyme C on the thermal stability of the protein.  相似文献   

20.
Tracing of neuroanatomical pathways commonly involves the histochemical demonstration of horseradish peroxidase, using the chromogen tetramethylbenzidine. A new modification of this reaction using ammonium paratungstate stabilizer retains high sensitivity while permitting the reaction to be performed at pH 6.0 in isotonic solutions. The reaction product resists solvents, allowing Nissl-stained sections to retain their peroxidase labeling. With subsequent stabilization by diaminobenzidine, the tissue is suitable for electron microscopic study and is compatible with post-embedding immunocytochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号