首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size of rice leaves is tightly controlled by environmental and genetic factors. Several functional genes control leaf growth and development by regulating cell expansion and cell cycle activity. The regulation of leaf growth, particularly the effects of environmental conditions on leaf size, is still poorly understood. We examined the environmental control of leaf size in rice (Oryza sativa) by performing a comparative proteomic analysis, which showed that exposure to high-nitrogen levels produced enlarged leaves. The enhanced leaf growth occurred mainly as a result of an increased number of cell cycles. Two proteins related to cell division, FtsZ and ERBB3 binding protein, were increased by nitrogen treatment in the developing leaves. The expression of a type-A response regulator, OsRR2, was also elevated in developing leaves. OsRR2 acts as a negative regulator of cytokinin signaling and may reduce the cytokinin content in developing leaves; a low cytokinin level is necessary for leaf development. By analyzing the proteome response to nitrogen in both developing and mature leaves, we provide deeper insight into the mechanism by which nitrogen treatment affects the phenotype.  相似文献   

2.
Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems‐level genetic architecture coordinating division timing, we performed a high‐content screening for genes whose depletion produced a significant reduction in the a synchrony of d ivision between s ister cells (ADS) compared to that of wild‐type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time‐lapse imaging followed by computer‐aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.  相似文献   

3.
Leaves are major photosynthetic organs, and their diverse shapes and sizes allow adaptation to the natural environment. The early control of leaf shape and size depends on the control of the rate and plane of cell division at the shoot apical meristem and the polarity-dependent cell differentiation in the leaf primordium. In this review, we first summarize knowledge regarding several genes that control the initial stages of leaf formation and leaf polarity (e.g. adaxial–abaxial polarity, symmetry, and flat morphology). Formation of the lateral leaf morphology involves co-ordination of the rates of division and enlargement of leaf cells. Thus, we also summarize information on a number of genes that control these stages of two-dimensional lateral leaf growth (e.g. polarized cell expansion, specific control of cell proliferation, and integration of cell proliferation and expansion). In addition, we discuss several recently identified microRNAs, which are important factors affecting the development of leaf shape via control of spatial and temporal expression of target gene families. We focus on the genetic regulation of leaf shape in the model plant Arabidopsis thaliana from the perspective of spatial and temporal balance among cell proliferation, enlargement, and differentiation, with special emphasis on the results of our own studies.  相似文献   

4.
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.  相似文献   

5.
Regulating plant architecture is a major goal in current breeding programs. Previous studies have increased our understanding of the genetic regulation of plant architecture, but it is also essential to understand how organ morphology is controlled at the cellular level. In the cell wall, pectin modification and degradation are required for organ morphogenesis, and these processes involve a series of pectin-modifying enzymes. Polygalacturonases (PGs) are a major group of pectin-hydrolyzing enzymes that cleave pectin backbones and release oligogalacturonides (OGs). PG genes function in cell expansion and separation, and contribute to organ expansion, separation and dehiscence in plants. However, whether and how they influence other cellular processes and organ morphogenesis are poorly understood. Here, we characterized the functions of Arabidopsis PG45 (PG45) in organ morphogenesis using genetic, developmental, cell biological and biochemical analyses. A heterologously expressed portion of PG45 cleaves pectic homogalacturonan in vitro, indicating that PG45 is a bona fide PG. PG45 functions in leaf and flower structure, branch formation and organ growth. Undulation in pg45 knockout and PG45 overexpression leaves is accompanied by impaired adaxial–abaxial polarity, and loss of PG45 shortens the duration of cell proliferation in the adaxial epidermis of developing leaves. Abnormal leaf curvature is coupled with altered pectin metabolism and autogenous OG profiles in pg45 knockout and PG45 overexpression leaves. Together, these results highlight a previously underappreciated function for PGs in determining tissue polarity and regulating cell proliferation, and imply the existence of OG-based signaling pathways that modulate plant development.  相似文献   

6.
Genetic modification of plant architecture and variety improvement in rice   总被引:1,自引:0,他引:1  
Yang XC  Hwa CM 《Heredity》2008,101(5):396-404
The structure of the aerial part of a plant, referred to as plant architecture, is subject to strict genetic control, and grain production in cereal crops is governed by an array of agronomic traits. Rice is one of the most important cereal crops and is also a model plant for molecular biological research. Recently, significant progress has been made in isolating and collecting rice mutants that exhibit altered plant architecture. In this article we summarize the recent progress in understanding the basic patterning mechanisms involved in the regulation of tillering (branching) pattern, stem structure and leaf arrangement in rice plants. We discuss the relationship between the genetic modification of plant architecture and the improvement of pivotal agronomic traits in rice.  相似文献   

7.
Phytohormones are important plant growth regulators that control many developmental processes, such as cell division, cell differentiation, organogenesis and morphogenesis. They regulate a multitude of apparently unrelated physiological processes, often with overlapping roles, and they mutually modulate their effects. These features imply important synergistic and antagonistic interactions between the various plant hormones. Auxin and cytokinin are central hormones involved in the regulation of plant growth and development, including processes determining root architecture, such as root pole establishment during early embryogenesis, root meristem maintenance and lateral root organogenesis. Thus, to control root development both pathways put special demands on the mechanisms that balance their activities and mediate their interactions. Here, we summarize recent knowledge on the role of auxin and cytokinin in the regulation of root architecture with special focus on lateral root organogenesis, discuss the latest findings on the molecular mechanisms of their interactions, and present forward genetic screen as a tool to identify novel molecular components of the auxin and cytokinin crosstalk.  相似文献   

8.
Phytohormones are important plant growth regulators that control many developmental processes, such as cell division, cell differentiation, organogenesis and morphogenesis. They regulate a multitude of apparently unrelated physiological processes, often with overlapping roles, and they mutually modulate their effects. These features imply important synergistic and antagonistic interactions between the various plant hormones. Auxin and cytokinin are central hormones involved in the regulation of plant growth and development, including processes determining root architecture, such as root pole establishment during early embryogenesis, root meristem maintenance and lateral root organogenesis. Thus, to control root development both pathways put special demands on the mechanisms that balance their activities and mediate their interactions. Here, we summarize recent knowledge on the role of auxin and cytokinin in the regulation of root architecture with special focus on lateral root organogenesis, discuss the latest findings on the molecular mechanisms of their interactions, and present forward genetic screen as a tool to identify novel molecular components of the auxin and cytokinin crosstalk.  相似文献   

9.
Leaf area expansion is affected by environmental conditions because of differences in cell number and/or cell size. Increases in the DNA content (ploidy) of a cell by endoreduplication are related to its size. The aim of this work was to determine how cell ploidy interacts with the regulation of cell size and with leaf area expansion. The approach used was to grow Arabidopsis thaliana plants performing increased or decreased rounds of endoreduplication under shading and water deficit. The shading and water deficit treatments reduced final leaf area and cell number; however, cell area was increased and decreased, respectively. These differences in cell size were unrelated to alterations of the endocycle, which was reduced by these treatments. The genetic modification of the extent of endoreduplication altered leaf growth responses to shading and water deficit. An increase in the extent of endoreduplication in a leaf rendered it more sensitive to the shade treatment but less sensitive to water deficit conditions. The link between the control of whole organ and individual cell expansion under different environmental conditions was demonstrated by the correlation between the plasticity of cell size and the changes in the duration of leaf expansion.  相似文献   

10.
Size control of multicellular organisms poses a longstanding biological question that has always fascinated scientists. Currently the question is far from being resolved because of the complexity of and interconnection between cell division and cell expansion, two different events necessary to form a mature organ. Because of the importance of plants for food and renewable energy sources, dissecting the genetic networks underlying plant growth and organ size is becoming a high priority in plant science worldwide. Here, we review the current understanding of the cellular and molecular mechanisms that govern leaf organ size and discuss future prospects on research aiming at understanding organ size regulation.  相似文献   

11.
Plants can have constitutive leaf angles that are fixed and do not vary much among different growth environments. Several species, however, have the ability to actively adjust their leaf angles. Active leaf repositioning can be functional in avoiding detrimental environmental conditions, such as avoidance of heat stress and complete submergence, or can be, for example, utilized to maximize carbon gain by positioning the leaves relative to the incoming radiation. In recent years, major advances have been made in the understanding of the molecular mechanisms, and the underlying hormonal regulation of a particular type of leaf movement: hyponastic growth. This differential petiole growth-driven upward leaf movement is now relatively well understood in model systems such as Rumex palustris and Arabidopsis thaliana. In the first part of this review we will discuss the functional consequences of leaf orientation for plant performance. Next, we will consider hyponastic growth and describe how exploitation of natural (genetic) variation can be instrumental in studying the relevance and control of leaf positioning.  相似文献   

12.
In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960 s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture,focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2 D and 3 D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development,highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.  相似文献   

13.
Changes in plant architecture, specifically conversion to compact canopy for cereal crops, have resulted in significant increases in grain yield for wheat (Triticum aestivum) and rice (Oryza sativa). For sorghum (Sorghum bicolor L. Moench.) a versatile crop with an open canopy, plant architecture is an important feature that merits strong consideration for modification. Here, we report the genetic, developmental, and physiological characterization of a sorghum genetic stock, KFS2061, a stable mutant (in the Western Black Hull Kafir background) which exhibit short and erect leaves resulting in compact plant architecture. Genetic study of an F2 population derived from the cross of KFS2061 to BTx623 showed that the short leaf is recessive and appeared to be controlled by a single gene. The expression of the short leaf trait commenced with the 3rd leaf and is propagated through the entire leaf hierarchy of the canopy. The short leaf mutant exhibited consistent steep leaf angle, 43° (with the main culm as reference), and greener leaves than wild type. Biochemical analyses indicated significantly higher chlorophyll and cellulose content per leaf area in the mutant than wild type. Histological studies revealed reduction in cell length along the longitudinal axis and enlargement of bulliform cells in the adaxial surface of the mutant leaf. Further evaluation of agronomic traits indicated that this mutation could increase harvest index. This study provides information on a short leaf genetic stock that could serve as a vital resource in understanding how to manipulate plant canopy architecture of sorghum.  相似文献   

14.
The regulation of cell cycle and apoptosis is fundamental to the control of cell growth and organism homeostasis. Failure to efficiently regulate these processes often results in the increased cell growth observed in tumours. Accumulation of genetic lesions frequently eliminates these regulatory steps so it is imperative that multiple signalling pathways are employed to ensure that efficient control is maintained. Over the last few years a novel signalling pathway entered the limelight that prevents inappropriate activation of the cell cycle and can elicit apoptosis to limit cell numbers. Denoted the MST/hippo pathway, it is involved in regulating cell number in organism development and tumour progression. Here we aim to review the evidence for a conserved pathway from flies to mammals, and of equal importance to initiate the discussion on the additional cellular and signalling processes that have been adopted by this pathway to achieve further regulation and diversified cellular outcomes in mammals.  相似文献   

15.
Designing the deconstruction of plant cell walls   总被引:2,自引:0,他引:2  
Cell wall architecture plays a key role in the regulation of plant cell growth and differentiation into specific cell types. Gaining genetic control of the amount, composition, and structure of cell walls in different cell types will impact both the quantity and yield of fermentable sugars from biomass for biofuels production. The recalcitrance of plant biomass to degradation is a function of how polymers crosslink and aggregate within walls. Novel imaging technologies provide an opportunity to probe these higher order structures in their native state. If cell walls are to be efficiently deconstructed enzymatically to release fermentable sugars, then we require a detailed understanding of their structural organization in future bioenergy crops.  相似文献   

16.
The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach.  相似文献   

17.
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial–abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial–abaxial tissue polarity and planar growth in plants.  相似文献   

18.
Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.

Phytochrome regulates leaf blade plasticity through two alternative cellular response strategies and concertedly coordinates gene expression of the basic cellular machinery of leaf development.  相似文献   

19.
To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non–cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed.Over millions of years, plant leaves and flowers evolved into an enormous range of shapes and sizes. Likely reflecting adaptations to changing environmental conditions, even closely related species often differ dramatically in their organ sizes (Mizukami 2001). Although interspecies diversity is remarkably high, species-specific leaf and petal characteristics are often highly uniform between individuals grown under constant conditions. This suggests that tight genetic control is used to integrate intrinsic growth signals and environmental cues to enable organ growth to a defined size. This review summarizes the current knowledge of the regulatory networks of plant size control at the cellular and at the organ level. We will focus on the regulation of determinate growth of lateral plant organs, such as simple leaves and petals.  相似文献   

20.
Size is an important parameter in the characterization of organ morphology and function. To understand the mechanisms that control leaf size, we previously isolated a number of Arabidopsis thaliana mutants with altered leaf size. Because leaf morphogenesis depends on determinate cell proliferation, the size of a mature leaf is controlled by variation in cell size and number. Therefore, leaf-size mutants should be classified according to the effects of the mutations on the cell number and/or size. A group of mutants represented by angustifolia3/grf-interacting factor1 and aintegumenta exhibits an intriguing cellular phenotype termed compensation: when the leaf cell number is decreased due to the mutation, the leaf cell size increases, leading to compensation in leaf area. Several lines of genetic evidence suggest that compensation is probably not a result of the uncoupling of cell division from cell growth. Rather, the evidence suggests an organ-wide mechanism that coordinates cell proliferation with cell expansion during leaf development. Our results provide a key, novel concept that explains how leaf size is controlled at the organ level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号