首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal—ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal—ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.  相似文献   

2.
Infection-related development in the rice blast fungus Magnaporthe grisea   总被引:8,自引:0,他引:8  
Recent developments have been made in the identification of signal transduction pathways and gene products involved in the infection-related development of the rice blast fungus, Magnaporthe grisea. It has been established that cAMP-dependent and MAP kinase-mediated signaling are both critical for appressorium morphogenesis and function. These signaling pathways may act downstream of hydrophobin-mediated surface sensing by the growing germ tube. Several genes have been identified that are required for invasive growth of M. grisea including genes that allow adaptation of fungal metabolism to growth within plant tissues.  相似文献   

3.
4.
5.
Reiterative signaling and patterning during mammalian tooth morphogenesis   总被引:47,自引:0,他引:47  
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.  相似文献   

6.
Making a tooth: growth factors, transcription factors, and stem cells   总被引:28,自引:0,他引:28  
Zhang YD  Chen Z  Song YQ  Liu C  Chen YP 《Cell research》2005,15(5):301-316
  相似文献   

7.
Biorobotics is a promising new area of research at the interface between biology and robotics. Robots can either be used as physical models of biological systems or be directly inspired by biological studies. A great deal of progress has recently been made in biorobotic studies of locomotion, orientation, and vertebrate arm control.  相似文献   

8.
Heterocystous cyanobacteria grow as multicellular organisms with a distinct one-dimensional developmental pattern of single nitrogen-fixing heterocysts separated by approximately ten vegetative cells. Several genes have been identified that are required for heterocyst development and pattern formation. A key regulator, HetR, has been recently shown to be aserine-type protease.  相似文献   

9.
Phylogenetic analyses and sequence surveys of developmental regulator gene families indicate that two large-scale gene duplications, most likely genome duplications, occurred in ancestors of vertebrates. Relaxed constraints allowed duplicated and thus redundant genes to diverge in a two stage mechanism. Neutral changes dominated at first but then positively selected regulatory changes evolved the novel and increasingly complex vertebrate developmental program.  相似文献   

10.
11.
Organ rudiments with their epithelial bud and adjacent mesenchyme look much the same at their initial stage of differentiation. The subsequent branching of the epithelial anlagen determines the final pattern of the organs, but the mesenchyme provides essential signals for epithelial differentiation. Glial cell line derived neurotrophic factor (GDNF) has recently been shown to regulate ureteric branching morphogenesis and is thereby the first defined signalling molecule in the embryonic metanephric kidney. GDNF is expressed by the mesenchyme, binds to the tip of the ureteric bud and functions in both bud induction and bud orientation. The active receptor complex for GDNF includes the receptor tyrosine kinase Ret and a novel class of glycosylphosphatidylinositol-linked receptors, called GDNF family receptor αs.  相似文献   

12.
A variety of approaches has recently been employed to investigate how sister cells adopt distinct fates following asymmetric divisions during plant development. Surgical and drug studies have been used to analyze asymmetric divisions during both early embryogenesis in brown algae and pollen development in tobacco. Genetic screens have been used to identify genes in Arabidopsis thaliana that are required for specific asymmetric cell divisions during pollen and root development. These studies indicate that cell polarity and division orientation are closely tied to the process of cell fate specification, and suggest that differential inheritance of determinants and positional information may both be involved in the specification of cell fates following asymmetric cell division.  相似文献   

13.
The understanding of molecular mechanisms regulating the formation, growth and differentiation of haemopoietic stem cells has advanced considerably recently. Particular progress has been made in defining the cytokines, chemokines and extracellular matrix components which retain and maintain primitive haemopoietic cell populations in bone marrow. Furthermore, signal transduction pathways that are critical for haemopoiesis, both in vivo and in vitro, and that are activated by cytokines have also been identified and further characterised. The importance of these processes has, this year, been exemplified by the phenotypes of mice deficient in key signal transduction proteins and the discovery that mutations in the component proteins of some signalling pathways are linked to human diseases. Significant advances in understanding the molecular mechanisms for mobilisation of stem cells from bone marrow have also been made this year; this has potential importance for bone marrow transplantation.  相似文献   

14.
Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.  相似文献   

15.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

16.
Motoneurons have distinct identities and muscle targets. Recent classical and molecular genetic studies in flies and vertebrates have begun to elucidate how motoneuron identities and target specificities are established. Many of the same molecules participate in the guidance of both vertebrate and fly motor axons. It is less clear, however, whether the same molecular mechanisms establish vertebrate and fly motoneuron identities.  相似文献   

17.
cp27 is a novel gene involved in early vertebrate development that features a distinct protein localization pattern in developing tooth organs. During initial tooth development, CP27 was detected at the epithelial-mesenchymal interface of dental lamina stage tooth organs. At later stages of tooth development, CP27 was localized in the stellate reticulum, the oral mucosa mesenchyme, and alveolar bone. The significant changes in the highly restricted distribution pattern suggest that CP27 might be involved at several different levels during tooth development.  相似文献   

18.
Telomeres are guanine-rich regions that are located at the ends of chromosomes and are essential for preventing aberrant recombination and protecting against exonucleolytic DNA degradation. Telomeres are maintained by telomerase, an RNA-dependent DNA polymerase. Because telomerase is known to be expressed in tumor cells, which concurrently have short telomeres, and not in most somatic cells, which usually have long telomeres, telomerase and telomere structures have been recently proposed as attractive targets for the discovery of new anticancer agents. The most exciting current strategies are aimed at specifically designing new drugs that target telomerase or telomeres and new models have been formulated to study the biological effects of inhibitors of telomerase and telomeres both in vitro and in vivo.  相似文献   

19.
How and when do vertebrate neural precursor cells choose their fates? While some studies suggest a series of commitments on the road to fate choice, many recent experiments indicate that precursor fate choices can often be changed. Additionally, the identification of common gene control mechanisms in precursors suggest that these cells share fundamental properties throughout development.  相似文献   

20.
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号