首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Mutants of Aspergillus nidulans with temperature sensitive growth on various amides have been isolated. Three of these mutants have a lesion in the amdS gene and their properties indicate that this is the structural gene for the acetamidase enzyme. In addition one of these mutants appears to be temperature sensitive for assembly of enzyme sub-units. The fourth mutant has a lesion in the amdR gene and, while producing a normal enzyme, is temperature sensitive for synthesis of the acetamidase. The properties of these mutants provide support for a model in which amdR codes for a protein which acts positively to activate synthesis of the acetamidase. A discussion of the present knowledge concerning acetamidase regulation is presented.  相似文献   

2.
Summary Mutants of Aspergillus nidulans with lesions in gene amdT are pleiotropically affected in their ability to utilize a wide variety of nitrogen sources in the presence of glucose. Ability to utilize a number of these compounds as sole sources of carbon and nitrogen is not altered. One of these mutants, amdT102, has properties consistent with it being derepressed for glucose repression of the utilization of most (but not all) nitrogen sources. The amdT102 mutant can grow strongly on histidine, lysine and cystine as sole nitrogen sources while the wild type strain grows extremely poorly on these amino acids. Similar but less extreme effects apply to many other nitrogen sources. The amdT19 mutant is unable to utilize most nitrogen sources in the presence of glucose, suggesting that it is subject to greatly increased repression of nitrogen source utilization. The amdT mutants are not affected in their ability to use many compounds as sole carbon sources. Carbon sources other than glucose also affect utilization of nitrogen sources in the amdT mutants.  相似文献   

3.
Summary Mutants altered in carbon catabolite regulation have been isolated by selecting for mutants of theareA217 strain capable of using acetamide as the sole nitrogen source in the presence of sucrose. In addition tocreA mutants described previously by Arst and Cove, strains with mutations in two new genes,creB andcreC, have been found. ThecreB andcreC mutants grow poorly on some sole carbon sources and have low levels of some enzymes of carbon catabolism e.g. -galactosidase and D-quinate dehydrogenase. ThecreB andcreC mutants are hypersitive to fluoroacetate, fluoroacetamide and allyl alcohol in the presence of glucose or sucrose but not glycerol; and the enzymes, acetamidase, and alcohol dehydrogenase, are less sensitive to carbon catabolite repression than the wild-type strain. Extracellular protease and -glucosidase enzyme activities are elevated increB andcreC mutants, while L-proline and L-glutamate uptake capacities are lower in both the presence and absence of glucose. Interactions betweencreA, B and C mutations have been investigated in double mutants, and the dominance properties ofcreB andcreC mutants determined. The results indicate that thecreB andcreC genes may have a regulatory role in the control of carbon catabolism.  相似文献   

4.
A mutation, amdT19, which leads to inability to grow on glutamate as the sole nitrogen source but does not affect growth on glutamate as the sole source of carbon and nitrogen, is shown to result in increased repression of glutamate uptake by glucose. An allelic mutation, amdT102, results in insensitivity to glucose repression. Glutamate uptake is still sensitive to NH4+ repression in the presence of glucose in these strains. Starvation for a carbon source leads to relief of NH4+ repression.  相似文献   

5.
Induction and Repression of Amidase Enzymes in Aspergillus nidulans   总被引:7,自引:5,他引:2       下载免费PDF全文
Aspergillus nidulans can grow on acetamide as both a carbon and nitrogen source and can also grow on formamide as a nitrogen source. Two distinct enzymes, an acetamidase and a formamidase, are produced. The control of the synthesis of these two enzymes in a wild-type strain was investigated. The formamidase is induced by acetamide and formamide and repressed by ammonia. The acetamidase is induced by formamide and acetamide, repressed by carbon metabolites derived from glucose and acetate, and repressed by ammonia. Repression of the acetamidase by ammonia depends on the carbon source; growth on glucose but not on acetate or acetamide allows repression to occur. The pattern of acetamidase repression is compared with that of histidine catabolic enzymes in various bacteria.  相似文献   

6.
Summary The levels of glucose-6-phosphate and 6-phosphogluconate dehydrogenase in wildtype cells of Aspergillus nidulans varied with the carbon and nitrogen source. In general, hexokinase activity did not vary with carbon or nitrogen source. The ammonium derepressed mutant amrA1 had only 50% of the wildtype level of hexokinase. Phosphoglucomutase activity was low in wildtype cells grown with nitrate, but high in cells grown with ammonium when glucose was the carbon source. A non-inducible mutant, nirA -1, in the regulatory gene for nitrate reductase, had high phosphoglucomutase activity when grown with nitrate or ammonium. A constitutive mutant nirA c1, in the regulatory gene for nitrate reductase had low phosphoglucomutase activity when grown with nitrate or ammonium. The mutants nir -1 and nirA c1 are recessive and semi-dominant respectively for abnormal phosphoglucomutase activity.  相似文献   

7.
Mutants of Apergillus nidulans with lesions in a gene, areA (formerly called amdT), have been isolated by a variety of different selection methods. The areA mutants show a range of pleiotropic growth responses to a number of compounds as sole nitrogen sources, but are normal in utilization of carbon sources. The levels of two amidase enzymes as well as urease have been investigated in the mutants and have been shown to be affected by this gene. Most of the areA mutants have much lower amidase-specific activities when grown in ammonium-containing medium, compared with mycelium incubated in medium lacking a nitrogen source. Some of the areA mutants do not show derepression of urease upon relief of ammonium repression. The dominance relationships of areA alleles have been investigated in heterozygous diploids, and these studies lend support to the proposal that areA codes for a positively acting regulatory product. One of the new areA alleles is partially dominant to areA+ and areA102. This may be a result of negative complementation or indicate that areA has an additional negative regulatory function. Investigation of various amdR; areA double mutants has led to the conclusion that amdR and areA participate in independent regulatory circuits in the control of acetamide utilization. Studies on an amdRc; areA double mutant indicate that areA is involved in derepression of acetamidase upon relief of ammonium repression.  相似文献   

8.
Chlamydomonas reinhardi can utilise the lower aliphatic amides (C1–C4) as nitrogen sources. Of these only acetamide can serve as a sole carbon source. The acetamide analogue F-acetamide kills cells after conversion to F-acetate and F-citrate. This conversion is controlled by exogenous ammonia and, in part, acetate levels. Only one enzyme and one active site are involved in acetamidase function. Enzymatic analysis indicates an increased substrate range as compared to the growth — supported range, indicating uptake, toxicity or metabolic control restrictions.Abbreviations TCA trichloroacetic acid - TAP tris-acetate-phosphate medium - MIC mimmum inhibitory concentration - BSA bovine serum albumin  相似文献   

9.
With choline as carbon source Thiosphaera pantotropha GB17 grew with a doubling time (td) of 6 h. The cellular yield was 55.8 g dry cell weight per mol of choline, indicating that its methyl moieties were used for growth. However, T. pantotropha was unable to grow with methanol or with methylamine as carbon source. Mutants were isolated from liquid or from solid media able to grow with methanol (Mox+) as carbon or methylamine as nitrogen source (Mam+). The Mox+ mutant GB17M grew with a mean td of 11.7h and a growth yield of 8.9 g dry cell weight per mol of methanol. Diauxic growth of strain GB17M was observed with mixtures of pyruvate and methanol as substrates in batch culture. Methanol led to the formation of methanol dehydrogenase, formate dehydrogenase, ribulosebisphosphate carboxylase and of a soluble cytochrome c-551.5. Tn5-insertional mutants defective in the thiosulfate oxidizing enzyme system or in hydrogenase acquired the Mox+ phenotype. However, Tn5-insertional mutants defective in either a c-type cytochrome or the molybdenum cofactor did not mutate to the Mox+ phenotype, indicating common functions in thiosulfate and in methanol metabolism.  相似文献   

10.
The acetamidase of Mycobacterium smegmatis is an inducible enzyme which enables the organism to utilise several amides as sole carbon sources. The acetamidase structural gene (amiE) is located downstream of four other genes, of which three form a probable operon with amiE; the fourth (amiC) is divergently transcribed. We constructed deletion mutants in two of these genes in order to determine their role in acetamidase expression. Both AmiC and AmiD were shown to be positive regulators of acetamidase expression required for induction. Combinations of regulatory gene deletions were made which revealed that AmiC interacts with the previously characterised negative regulator AmiA, whereas AmiD does not.  相似文献   

11.
Pseudomonas marginalis, capable of utilizing acetonitrile as the sole source of carbon and nitrogen, was isolated from an industrial waste site. P. marginalis metabolized acetonitrile into ammonia and acetate. The minimal inhibitory concentration values of different nitriles and amides for P. marginalis were in the range 5–300 mM. The bacterium was able to transform high-molecular-mass nitrile compounds and their respective amides into ammonia. The data from substrate-dependent kinetics showed that the K m and V max values of P. marginalis for acetonitrile were 33 mM and 67 nmol oxygen consumed min–1 (ml cell suspension)–1 respectively. The study with [14C]acetonitrile indicated that nearly 66% of the carbon was released as 14CO2 and 12% was associated with the biomass. The enzyme system involved in the hydrolysis of acetonitrile was shown to be intracellular and inducible. The specific activities of the enzymes nitrile aminohydrolase and amidase were determined in the cell-free extracts of P. marginalis. Both the enzymes could hydrolyze a wide range of nitriles and amides. The present study suggests that the biodegradation of organic nitriles and the bioproduction of organic acids may be achieved with the cells of P. marginalis.  相似文献   

12.
TheamdS gene codes for an acetamidase enzyme that hydrolyses acetamide to acetate and ammonium thus providingA. nidulans with a source of carbon and nitrogen. The exceptionally favourable genetics of this system combined with molecular analysis have enabled many regulatory circuits affectingamdS to be identified genetically. Characterization of the regulatory genes and the definition of the cis-acting sites involved have been done using bothin vivo andin vitro mutagenesis. Recent results on the analysis of the system are presented.  相似文献   

13.
ThenihB gene ofAspergillus nidulans was found to confer sensitivity to elevated concentrations of nitrite, compact morphology and absence of conidiation. ThenihB locus was allocated to linkage group II and was recessive in heterozygous diploids. When thenihB1 mutant was grown on a mixture of nitrite plus NH 4 + its sensitivity to nitrite was unchanged. A possible role for this gene in nitrite transport and/or the maintenance of membrane integrity is discussed.  相似文献   

14.
Catabolite repression-resistant mutants of Bacillus subtilis.   总被引:3,自引:0,他引:3  
Mutants of Bacillus subtilis that are able to sporulate under the condition of catabolite repression were isolated by a simple selection technique. The mutants used in the present study were able to grow normally on minimal medium with ammonium sulphate as the nitrogen source and glucose as the carbon source. Studies carried out with these mutants show that there is no close relation between catabolite repression of an inducible enzyme, acetoin dehydrogenase, and that of sporulation. Certain mutants are able to sporulate in the presence of all the carbon sources tested but some mutants are resistant only to the carbon source used in isolation. It is suggested that several metabolic steps may be affected in catabolite repression of sporulation.  相似文献   

15.
Acetamide, a nitrogen and carbon source for Chlamydomonas reinhardtii, is hydrolyzed by acetamidase to ammonium and acetate. It also induces urea pathway activities. Fluoroacetamide (F-acetamide) is toxic to wild-type through conversion to F-citrate, a respiratory inhibitor. Resistant mutants were selected on plates of F-acetamide plus urea. When tested on acetamide plates two mutant classes were obtained, acm+ (utilized acetamide as sole N source) and acm-. All acm+ isolates had acetamidase activity and were obligate phototrophs (i.e. dark-diers). Acm- isolates had either normal urea assimilation (ure+) or lacked all urea pathway activities, namely transport, urea carboxylase and allophanate hydrolase (ure-). Inheritance patterns for both types indicated single nuclear gene mutations. The acm- ure+ type presumably resulted from a defective acetamidase gene, and the acm- ure- strains might be regulatory gene mutants. Temperature conditional F-acetamide tolerant mutants were also obtained. Acetamidase extracted from one such strain was more thermolabile than the wild-type enzyme, indicating a mutation in the coding region. The hypothesis that acetamidase is involved in urea assimilation was not supported by the genetic and biochemical evidence.Abbreviations F-acetamide fluoroacetamide - F-acetate fluoroacetate - TAP tris-acetate-phosphate medium - CDB Chlamydomonas dilution buffer - TCA trichloroacetic acid - AH allophanate hydrolase - UC urea carboxylase - PAR photosynthetically active radiation - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

16.
Xanthine dehydrogenase (XDH) is the initial enzyme in the purine catabolic pathway ofN. crassa. Secondary nitrogen sources such as purines are metabolized when preferred sources of reduced nitrogen (ammonium or glutamine) are unavailable. XDH synthesis is regulated by glutamine repression and uric acid induction. Thenit-2 locus is believed to encode atrans-acting positive regulator essential for the expression of genes encoding enzymes involved in secondary pathways of nitrogen acquisition, such as XDH and nitrate reductase. However, immunoblot analyses and enzyme assays reveal that XDH protein is synthesized and XDH activity is expressed innit-2 mutants. Nevertheless, XDH responds to nitrogen metabolite repression. The generality thatnit-2 is an obligate control element in nitrogen metabolite repression is questioned. Additionally, mutants defective in XDH activity, namely,xdh-1 and the molybdenum cofactor mutantsnit-1, -7, -8 and -9, are observed to grow on xanthine but not hypoxanthine.This research was supported in part by National Science Foundation Grant DMB 8516203.  相似文献   

17.
The Brevibacterium R 312 strain has an amidase with a wide substrate spectrum previously named acetamidase. The study of its activity showed that this enzyme was able to hydrolyze a large number of amides into their corresponding organic acids. The affinity of this enzyme for the substrates varied according to the length of the carbon chain and the spatial crowding of the molecule. The comparison of the specific rates of hydrolysis showed that propionamide was the amide substrate most quickly hydrolyzed.We confirmed the inducible feature of this enzyme and noted that only acetamide and N-methylacetamide were inducers of this enzyme among the compounds tested. Thioacetamide and N-methylpropionamide, both as amide analogues, were shown to inhibit the biosynthesis of acetamidase. Similarly, the organic acids, products of the hydrolysis reaction, showed a strong repression action on the biosynthesis of the enzyme.  相似文献   

18.
Two classes of ornithine-nonutilizing (oru) mutants of Pseudomonas aeruginosa PAO were investigated. Strains carrying the oru-310 mutation were entirely unable to grow on l-ornithine as the only carbon and nitrogen source and were affected in the assimilation of a variety of nitrogen sources (e.g., amino acids, nitrate). The oru-310 mutation caused changes in the regulation of the catabolic NAD-dependent glutamate dehydrogenase; this enzyme was no longer inducible by glutamate but instead could be induced by ammonia. The oru-310 locus was cotransducible with car-9 and tolA in the 10 min region of the chromosome. An oru-314 mutant was severely handicapped in ornithine medium but could grow when a good carbon source was added; the mutant also showed pleiotropic growth effects related to nitrogen metabolism. The oru-314 mutation affected the regulation of the anabolic NADP-dependent glutamate dehydrogenase, which was no longer repressed by glutamate but showed normal derepression in the presence of ammonia. The oru-314 locus was mapped by transduction near met-9011 at 55 min. Both oru mutants could grow on l-glutamate, l-proline, or l-ornithine amended with 2-oxoglutarate, albeit slowly. We speculate that insufficient 2-oxoglutarate concentrations might account, at least in part, for the Oru- phenotype of the mutants.  相似文献   

19.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   

20.
Microbial degradation of acrylamide monomer   总被引:3,自引:0,他引:3  
Acrylamide, a neurotoxic monomer with extensive industrial applications was found to be degraded by the microorganisms present in a tropical garden soil. A bacterium capable of degrading acrylamide was isolated from this soil by enrichment. It was found to be aerobic, gram-negative, motile, short rod and identified as Pseudomonas sp. The bacterium degraded high concentrations of acrylamide (4 g/l) to acrylic acid and ammonia which were utilized as sole carbon and nitrogen source for growth. An amidase was involved in the hydrolysis of acrylamide, which could act on other short chain amides like formamide and acetamide but not on acrylamide analogues: methacrylamide and N,N-methylene bis-acrylamide. The enzyme was sensitive to catabolite repression by succinate both in presence as well as absence of nitrogen source.Abbreviations Acrylamide (ACR) High Performance Liquid Chromatography (HPLC)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号