首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio‐temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run‐off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems.  相似文献   

2.
In this article, we studied the fluxes of organic and inorganic (DIC) carbon in a coastal lagoon dominated by highly productive macrophyte meadows (Albufera des Grau, Balearic Islands). Seasonal and annual carbon budgets were performed from estimates of whole-system fluxes, and the fate of organic matter production was evaluated through a stable isotope exploration of the food web. The results showed an extremely intense cycling of DIC, with a turnover between 65 and 13 times faster than water turnover. The metabolic fluxes were the main contributors to the seasonal and annual DIC budgets, which were secondarily affected by calcite precipitation, atmospheric exchange and hydrological fluxes. The inorganic carbon dynamics was strongly determined by the seasonal cycle of the meadows. Accordingly the air?Cwater CO2 flux shifted seasonally, and the lagoon was a sink of atmospheric CO2 during the vegetated period and a source during the period without macrophytes. The high macrophytic production played a minor role in the lagoon food web, which apparently relied on phytoplanktonic or allochthonous organic matter. A fast decomposition of macrophytic biomass appeared to be the main destiny of the annual macrophytic production, which was only secondarily buried in the sediments.  相似文献   

3.
A combination of enclosure nutrient enrichment experiments and historical data analysis was used to identify the factors controlling seasonal dynamics and competition of the phytoplankton community in the Curonian lagoon (Southeast Baltic Sea). Experiments using different nutrient (N, P and Si) manipulations were performed in 10-l enclosures for 48 h. Changes in chlorophyll a concentrations, inorganic nutrient concentrations, and plankton cell density were monitored. Results revealed that phytoplankton development in the lagoon is strongly affected by ambient physical factors (wind, temperature). Nutrient limitation, however, also plays an important role in seasonal succession mechanisms showing quite distinct seasonal development patterns. Based on the data, available phytoplankton seasonal succession in the Curonian lagoon could be described as composed by three phases corresponding to different domination and regulatory mechanisms.  相似文献   

4.
A microstructure characterization study using transmission electron microscopy (TEM) was conducted to specify organic matter dynamics during the co-composting process of sewage sludge, green waste and barks. TEM results showed that ligneous and polyphenolic compounds brought by barks were not biodegraded during composting. Green waste brought more or less biodegraded ligneous constituents and also an active microbial potential. Chloroplasts and sludge flocs appeared to be relevant indicators of green waste and sewage sludge in composted products, as they were still viewable at the end of the process. TEM characterization of the final product highlighted two main fractions of organic matter, one easily available and a more recalcitrant one, and also a remaining microbial activity. Thus microstructure characterization appeared to be an appropriate way of taking the heterogeneity of the organic constituents' size and composition into account when attempting to specify such compost quality parameters as maturity and stability.  相似文献   

5.
Bacterioplankton in freshwater streams play a critical role in stream nutrient cycling. Despite their ecological importance, the temporal variability in the structure of stream bacterioplankton communities remains understudied. We investigated the composition and temporal variability of stream bacterial communities and the influence of physicochemical parameters on these communities. We used barcoded pyrosequencing to survey bacterial communities in 107 streamwater samples collected from four locations in the Colorado Rocky Mountains from September 2008 to November 2009. The four sampled locations harboured distinct communities yet, at each sampling location, there was pronounced temporal variability in both community composition and alpha diversity levels. These temporal shifts in bacterioplankton community structure were not seasonal; rather, their diversity and composition appeared to be driven by intermittent changes in various streamwater biogeochemical conditions. Bacterial communities varied independently of time, as indicated by the observation that communities in samples collected close together in time were no more similar than those collected months apart. The temporal turnover in community composition was higher than observed in most previously studied microbial, plant or animal communities, highlighting the importance of stochastic processes and disturbance events in structuring these communities over time. Detailed temporal sampling is important if the objective is to monitor microbial community dynamics in pulsed ecosystems like streams.  相似文献   

6.
Microorganisms are central to both the beneficial (organic degradation, nutrient removal, biogas production) and detrimental (odor production, pathogen contamination) effects of swine waste storage systems. In this study, both quantitative (real-time polymerase chain reaction) and qualitative (denaturing gradient gel electrophoresis, cloning, sequence analysis) molecular analyses were used to track spatial and temporal changes in the microbial community of swine slurry from a 0.4 ha anaerobic lagoon. The lagoon, located in a region of western Kentucky which has a humid, subtropical environment, was sampled on a monthly basis (n = 10) over a period of one year at four different depths (top, 51 cm from the top, 152 cm from the top, and bottom >198 cm). The concentration and diversity of Bacteroides sp. was seasonal (up to 90% decrease between March and June). Hespellia sp. and other clostridial species, on the other hand, were endemic in the slurry (concentrations up to 1.0 × 107 cells mL?1 slurry) regardless of time of the year or lagoon depth. Results suggest that there were seasonal effects on the microbial community in the swine lagoon, while the effect of depth was not as pronounced. Seasonal changes in the microbial community in stored wastes may be (directly or indirectly) correlated with changes in malodor emissions from lagoons.  相似文献   

7.
The population dynamics and production of Acartia clausii, a planktonic marine copepod, were studied during 1973 and 1974 in a small temperate lagoon. An approach which integrated laboratory and in situ experiments with time-series sampling of the field population was used to analyze seasonal changes in the parameters of population growth (development, growth, fecundity, and mortality) and to elucidate the processes which affect these changes. The objective of the study was to understand the factors which control the seasonal cycle of abundance. The cycles of abundance were similar in the two years of study and were not affected by differences in the cycles of tidal inflow, temperature, and food availability even though the latter two factors appreciably affected growth, development, and fecundity rates. The abundance cycle is controlled by an annually consistent pattern of copepodid and adult mortality believed to be due to predation by the three-spined stickleback, the dominant fish species in the lagoon. Cannibalism and periodic tidal stimulation of hatching of accumulated eggs in the sediment help to regulate population abundance within seasonal limits. Production by the lagoon population was 229 kg C for the entire study period; 84—88% of the annual production occurred from April through July. In the area of the lagoon greater than 3-m deep the mean daily productions during the peak months of each year were 70 and 55 mg C m−2 for 1973 and 1974, respectively.  相似文献   

8.
We investigated seasonal differences in community structure and activity (leucine incorporation) of the planktonic bacterial assemblage in the freshwater and brackish-water zones of a shallow coastal lagoon of the southwestern Atlantic Ocean. Alphaproteobacteria formed the dominant microbial group in both zones throughout the sampling period. After an intrusion of marine water, members of the SAR11 lineage became abundant in the brackish-water zone. These bacteria were apparently distributed over the lagoon during the following months until they constituted almost 30% of all prokaryotic cells at both sampling sites. At the first sampling date (March 2003) a single alphaproteobacterial species unrelated to SAR11, Sphingomonas echinoides, dominated the microbial assemblages in both zones of the lagoon concomitantly with a bloom of filamentous cyanobacteria. Pronounced maxima of leucine incorporation were observed once in each zone of the lagoon. In the freshwater zone, this highly active microbial assemblage was a mix of the typical bacteria lineages expected in aquatic systems. By contrast, a single bacterial genotype with >99% similarity to the facultative pathogen gammaproteobacterial species Stenotrophomonas maltophilia formed >90% of the bacterial assemblage (>10(7) cell ml(-1)) in the brackish-water zone at the time point of highest bacterial leucine incorporation. Moreover, these bacteria were equally dominant, albeit less active, in the freshwater zone. Thus, the pelagic zone of the studied lagoon harbored repeated short-term blooms of single bacterial species. This finding may have consequences for environmental protection.  相似文献   

9.
The depth-dependent, seasonal, and diel variability of virus numbers, dissolved DNA (D-DNA), and other microbial parameters was investigated in the northern Adriatic Sea. During periods of water stratification, we found higher virus abundances and virus/bacterium ratios (VBRs) as well as a larger variability of D-DNA concentrations at the thermocline, probably as a result of higher microbial biomass. At the two investigated stations, virus densities were highest in summer and autumn (up to 9.5 × 1010 1–1) and lowest in winter (< 109 1–1); D-DNA concentrations were highest in summer and lowest in winter. The VBR as well as an estimated proportion of viral DNA on total D-DNA showed a strong seasonal variability. VBR averaged 15.0 (range, 0.9–89.1), and the percentage of viral DNA in total D-DNA averaged 18.3% (range, 0.1–96.1%). An estimation of the percentage of bacteria lysed by viruses, based on 2-h sample intervals in situ, ranged from 39.6 to 212.2% d–1 in 5 m and from 19.9 to 157.2% d–1 in 22 m. The estimated contribution of virus-mediated bacterial DNA release to the D-DNA pool ranged from 32.9 to 161% d–1 in 5 m and from 10.3 to 74.2% d–1 in 22 m. Multiple regression analysis and the diel dynamics of microbial parameters indicate that viral lysis occasionally could be more important in regulating bacterial abundances than grazing by heterotrophic nanoflagellates. Correspondence to: M.G. Weinbauer  相似文献   

10.
The complexity and variability of processes determining dissolved organic matter (DOM) quality is likely to increase in highly dynamic systems such as Mediterranean water bodies. We studied the dynamics of DOM in a Mediterranean lagoon dominated by seasonal submerged vegetation and receiving torrential freshwater inputs. In order to trace changes in DOM quality throughout the year in relation with potential DOM sources, we used spectroscopic techniques including UV–visible absorbance and fluorescence excitation–emission matrices. The quality of the lagoon DOM fluctuates on a seasonal basis between the characteristics of torrential inputs and macrophytes. Humification and aromaticity of DOM increased markedly after the torrential inputs of materials derived from terrestrial vegetation and soils in the catchment. The macrophytes in the lagoon contributed with less humified materials and protein-like compounds. Other minor processes such as seawater entrances, photodegradation or temporary bottom hypoxia translated into sporadic DOM quality changes. These results highlight the need of a whole ecosystem approach to understand changes in DOM quality due to ecosystem processes that might otherwise be exclusively attributed to DOM reactivity.  相似文献   

11.
Patterns and mechanisms of plankton crustacean seasonal succession in the eutrophic freshwater Curonian lagoon (south-eastern Baltic Sea) were analysed on the basis of four-year (1995, 1996, 1998 and 1999) field sampling results. The seasonal crustacean zooplankton succession in the lagoon appears to be the consistent six-stage sequence of four distinct species complexes. Each stage is characterised by its individual species composition and quantitative characteristics. The uniform and periodic pattern of the limnetic zooplankton crustacean successional stages in the lagoon indicates that the seasonal succession of the limnetic zooplankton is not disturbed by unpredictable environmental fluctuations, such as brackish water inflows. Seasonal zooplankton succession is also comparatively uniform at a spatial scale. Not more than two adjacent successional stages were found across the northern part of the lagoon during each of 11 seasonal surveys. Comparison between monthly water residence time and dominant plankton crustacean species life cycle duration points to a more transitory plankton community in spring while in the summer it is not much influenced by lagoon hydrodynamics. Consequently, the Curonian lagoon crustacean community quite closely follows the Plankton Ecology Group (PEG)-described freshwater lake seasonal succession in summer and turns into a lentic-like system in spring and autumn.  相似文献   

12.
The aim of this study was to assess the efficiency of leachate treatment by microbial oxidation in four connected on-site aerated lagoons at a landfill site. The landfill site was found to be in an ageing methanogenic state, producing leachate with relatively low COD (mean value 1740 mg l−1) and relatively high ammonium concentrations (mean value 1241 mg l−1). Removal of COD averaged 75%, with retention times varying from 11 to 254 days. Overall 80% of the N load was removed within the plant, some by volatilisation of ammonium. Microbial community profiling of the water from each lagoon showed a divergent community profile, presumably a reflection of the nutrient status in each lagoon. In municipal solid waste landfills under similar conditions, leachate treatment through a facultative aerobic system in which sequential aerobic and anaerobic microbial oxidations occurred can readily be achieved using a simple two-lagoon system, suggesting this technology can be economic to install and simple to run.  相似文献   

13.
Hydraulic flush waste removal systems coupled to solid/liquid separators and circulated treatment lagoons are commonly utilized to manage the large amounts of animal waste produced on high-intensity dairy farms. Although these systems are common, little is known about the microbial populations that inhabit them or how they change as they traverse the system. Using culture-based and non-culture-based methods, we characterized the microbial community structure of manure, water from the separator pit, and water from the circulated treatment lagoon from a large dairy in the San Joaquin Valley of California. Our results show that both total bacterial numbers and bacterial diversity are highest in manure, followed by the separator pit water and the lagoon water. The most prevalent phylum in all locations was the Firmicutes (low-G+C, gram-positive bacteria). The most commonly occurring operational taxonomic unit (OTU) had a 16S rRNA gene (rDNA) sequence 96 to 99% similar to that of Clostridium lituseburense and represented approximately 6% of the manure derived sequences, 14% of the separator pit-derived sequences and 20% of the lagoon-derived sequences. Also highly prevalent was an OTU with a 16S rDNA sequence 97 to 100% similar to that of Eubacterium tenue, comprising approximately 3% of the manure-derived sequences, 6% of the separator pit-derived sequences and 9% of the lagoon-derived sequences. Taken together, these sequences represent approximately one-third of the total organisms in the lagoon waters, suggesting that they are well adapted to this environment.  相似文献   

14.
We analyzed, by terminal restriction fragment length polymorphisms (T-RFLPs) of PCR-amplified 16S rDNA, microbial diversity in water collected during the dry and wet seasons in a human-impacted coastal lagoon. Water samples were fractionated by prefiltration to differentiate particle-associated and free-living microbes. From a sample collected during the dry season, prefiltration removed 23 to 44% of bacteria, as assessed by direct counts and MPN, and 99% of phytoplankton, as assessed by chlorophyll a. Restriction with RsaI yielded fewer peaks than restriction with HhaI. Diversity indices calculated from T-RFLPs were higher in the lagoon than adjoining coastal waters and higher in the particle-associated than the free-living fraction. In the dry season, peaks found only in bulk and particle-associated T-RFLPs were consistent with plastid and cyanobacterial ribotypes. These peaks matched those observed in the sequence of a clone generated from the bulk fraction with plastid and cyanobacterial specific primers. This clone appeared related to plastids found in the diatom genus Skeletonema. Principal component analysis of T-RFLPs suggested that the difference between the free-living and particle-associated fractions in the dry season was less than temporal variability in this lagoon and that these fractions varied significantly only in the wet season. This fractionation of microbial populations into particle-associated and free-living guilds during the wet season, when water residence time in the lagoon is relatively low, suggests an external source of particle-associated bacteria such as erosion of upland soils by runoff.  相似文献   

15.
Hydraulic flush waste removal systems coupled to solid/liquid separators and circulated treatment lagoons are commonly utilized to manage the large amounts of animal waste produced on high-intensity dairy farms. Although these systems are common, little is known about the microbial populations that inhabit them or how they change as they traverse the system. Using culture-based and non-culture-based methods, we characterized the microbial community structure of manure, water from the separator pit, and water from the circulated treatment lagoon from a large dairy in the San Joaquin Valley of California. Our results show that both total bacterial numbers and bacterial diversity are highest in manure, followed by the separator pit water and the lagoon water. The most prevalent phylum in all locations was the Firmicutes (low-G+C, gram-positive bacteria). The most commonly occurring operational taxonomic unit (OTU) had a 16S rRNA gene (rDNA) sequence 96 to 99% similar to that of Clostridium lituseburense and represented approximately 6% of the manure derived sequences, 14% of the separator pit-derived sequences and 20% of the lagoon-derived sequences. Also highly prevalent was an OTU with a 16S rDNA sequence 97 to 100% similar to that of Eubacterium tenue, comprising approximately 3% of the manure-derived sequences, 6% of the separator pit-derived sequences and 9% of the lagoon-derived sequences. Taken together, these sequences represent approximately one-third of the total organisms in the lagoon waters, suggesting that they are well adapted to this environment.  相似文献   

16.
Microbial community dynamics in a flowerpot-using solid biowaste composting (FUSBIC) process were monitored seasonally by quinone profiling and conventional microbiological methods. The FUSBIC system, which consisted of three flowerpots (14 L or 20 L capacity) with 5-6 kg each of a soil-compost mixture (SCM) as the primary reactors, was loaded daily with household biowaste from November 1998 to October 1999. The monthly average waste reduction rate was 88.2% for the 14-L system and 92.5% for the 20-L system on a wet weight basis. The direct total microbial count detected in the 14-L primary reactors ranged from 4.5 to 9.6x10(11) cells.g(-1) of dry wt of SCM, and the viable count of aerobic heterotrophic bacteria recovered on agar plates at 28 degrees C varied from 1.9 to 5.7x10(11) CFU.g(-1) of dry wt. The quinone content of SCM samples from the 14-L and 20-L systems ranged from 160 to 353 nmol.g(-1) of dry SCM. Ubiquinones, unsaturated menaquinones, and partially saturated menaquinones constituted 15.0-36.4, 14.8-22.0, and 41.8-61.6 mol% of the total content, respectively. The major quinone types detected were usually MK-8(H(2)), MK-9(H(2)), and Q-10. Variations in quinone profiles were evaluated numerically by using two parameters, the dissimilarity index (D) and microbial divergence index (MD(q)). The upper limit of seasonal changes in the microbial community structure was about 30% as expressed by D values. The MD(q) values calculated ranged from 18 to 22. A significant positive correlation was found between seasonal temperature and bacterial populations containing partially saturated menaquinones. These results indicated that the FUSBIC system contained highly diverse microbial populations that fluctuated to some extent depending on seasonal temperature. Members of the Actinobacteria were suggested to be the major constituents of the total population present.  相似文献   

17.
Bioturbated sediments are thought of as areas of increased denitrification or fixed-nitrogen (N) loss; however, recent studies have suggested that not all N may be lost from these environments, with some N returning to the system via microbial dinitrogen (N(2)) fixation. We investigated denitrification and N(2) fixation in an intertidal lagoon (Catalina Harbor, CA), an environment characterized by bioturbation by thalassinidean shrimp (Neotrypaea californiensis). Field studies were combined with detailed measurements of denitrification and N(2) fixation surrounding a single ghost shrimp burrow system in a narrow aquarium (15 cm by 20 cm by 5 cm). Simultaneous measurements of both activities were performed on samples taken within a 1.5-cm grid for a two-dimensional illustration of their intensity and distribution. These findings were then compared with rate measurements performed on bulk environmental sediment samples collected from the lagoon. Results for the aquarium indicated that both denitrification and N(2) fixation have a patchy distribution surrounding the burrow, with no clear correlation to each other, sediment depth, or distance from the burrow. Field denitrification rates were, on average, lower in a bioturbated region than in a seemingly nonbioturbated region; however, replicates showed very high variability. A comparison of denitrification field results with previously reported N(2) fixation rates from the same lagoon showed that in the nonbioturbated region, depth-integrated (10 cm) denitrification rates were higher than integrated N(2) fixation rates (~9 to 50 times). In contrast, in the bioturbated sediments, depending on the year and bioturbation intensity, some (~6.2%) to all of the N lost via denitrification might be accounted for via N(2) fixation.  相似文献   

18.
This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.  相似文献   

19.
Global climate change models indicate that storm magnitudes will increase in many areas throughout southwest North America, which could result in up to a 25% increase in seasonal precipitation in the Big Bend region of the Chihuahuan Desert over the next 50 years. Seasonal precipitation is a key limiting factor regulating primary productivity, soil microbial activity, and ecosystem dynamics in arid and semiarid regions. As decomposers, soil microbial communities mediate critical ecosystem processes that ultimately affect the success of all trophic levels, and the activity of these microbial communities is primarily regulated by moisture availability. This research is focused on elucidating soil microbial responses to seasonal and yearly changes in soil moisture, temperature, and selected soil nutrient and edaphic properties in a Sotol Grassland in the Chihuahuan Desert at Big Bend National Park. Soil samples were collected over a 3-year period in March and September (2004-2006) at 0-15 cm soil depth from 12 3 x 3 m community plots. Bacterial and fungal carbon usage (quantified using Biolog 96-well micro-plates) was related to soil moisture patterns (ranging between 3.0 and 14%). In addition to soil moisture, the seasonal and yearly variability of soil bacterial activity was most closely associated with levels of soil organic matter, extractable NH(4)-N, and soil pH. Variability in fungal activity was related to soil temperatures ranging between 13 and 26 degrees C. These findings indicate that changes in soil moisture, coupled with soil temperatures and resource availability, drive the functioning of soil-microbial dynamics in these desert grasslands. Temporal patterns in microbial activity may reflect the differences in the ability of bacteria and fungi to respond to seasonal patterns of moisture and temperature. Bacteria were more able to respond to moisture pulses regardless of temperature, while fungi only responded to moisture pulses during cooler seasons with the exception of substantial increased magnitudes in precipitation occurring during warmer months. Changes in the timing and magnitude of precipitation will alter the proportional contribution of bacteria and fungi to decomposition and nitrogen mineralization in this desert grassland.  相似文献   

20.
Examination of variation in ecological communities can lead to an understanding of the forces that structure communities, the consequences of change at the ecosystem level, and the relevant scales involved. This study details spatial and seasonal variability in the composition of nitrogen-fixing and cyanobacterial (i.e., oxygenic photosynthetic) functional groups of a benthic, hypersaline microbial mat from Salt Pond, San Salvador Island, Bahamas. This system shows extreme annual variability in the salinity of the overlying water and the extent of water coverage. Analysis of molecular variance and F(ST) tests of genetic differentiation of nifH and cyanobacterial 16S rRNA gene clone libraries allowed for changes at multiple taxonomic levels (i.e., above, below, and at the species level) to inform the conclusions regarding these functional groups. Composition of the nitrogen-fixing community showed significant seasonal changes related to salinity, while cyanobacterial composition showed no consistent seasonal pattern. Both functional groups exhibited significant spatial variation, changing with depth in the mat and horizontally with distance from the shoreline. The patterns of change suggest that cyanobacterial composition was more insensitive to water stress, and consequently, cyanobacteria dominated the nitrogen-fixing community during dry months but gave way to a more diverse community of diazotrophs in wet months. This seasonal pattern may allow the mat community to respond quickly to water-freshening events after prolonged dry conditions (system recovery) and maintain ecosystem function in the face of disturbance during the wet season (system resilience).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号