首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents an investigation of the effect of salt and phage concentrations on the binding affinity of magnetoelastic (ME) biosensors. The sensors were fabricated by immobilizing filamentous phage on the ME platform surface for the detection of Bacillus anthracis spores. In response to the binding of spores to the phage on the ME biosensor, a corresponding decrease occurs in resonance frequency. Transmission electron microscopy (TEM) was used to verify the structure of phage under different combinations of salt/phage concentration. The chemistry of the phage solution alters phage bundling characteristics and, hence, influences both the sensitivity and detection limit of the ME biosensors. The frequency responses of the sensors were measured to determine the effects of salt concentration on the sensors' performance. Scanning electron microscopy (SEM) was used to confirm and quantify the binding of spores to the sensor surface. This showed that 420 mM salt at a phage concentration of 1 x 10(11) vir/mL results in an optimal distribution of immobilized phages on the sensor surface, consequently promoting better binding of spores to the biosensor's surface. Additionally, the sensors immobilized with phage under this condition were exposed to B. anthracis spores in different concentrations ranging from 5 x 10(1) to 5 x 10(8) cfu/mL in a flowing system. The results showed that the sensitivity of this ME biosensor was 202 Hz/decade.  相似文献   

2.
We present an acoustic Love-wave biosensor for detection of the Bacillus anthracis simulant, Bacillus thuringiensis at or below inhalational infectious levels. The present work is an experimental study of 36 degrees YX cut LiTaO3 based Love-wave devices for detection of pathogenic spores in aqueous conditions. Given that the detection limit (D1) of Love-wave-based sensors is a strong function of the overlying waveguide, two waveguide materials have been investigated, which are polyimide and polystyrene. To determine the mass sensitivity of Love-wave sensor, bovine serum albumin (BSA) protein was injected into the Love-wave test cell while recording the magnitude and phase shift across each sensor. Polyimide had the lowest mass detection limit with an estimated value of 1.0-2.0 ng/cm2, as compared to polystyrene where D1 = 2.0 ng/cm2. Suitable chemistries were used to orient antibodies on the Love-wave sensor using protein G. The thickness of each biofilm was measured using ellipsometry from which the surface concentrations were calculated. The monoclonal antibody BD8 with a high degree of selectivity for anthrax spores was used to capture the non-pathogenic simulant B. thuringiensis B8 spores. Bacillus subtilis spores were used as a negative control to determine whether significant non-specific binding would occur. Spore aliquots were prepared using an optical counting method, which permitted removal of background particles for consistent sample preparation. This work demonstrates that Love-wave biosensors are promising for low-level detection for whole-cell biological pathogens.  相似文献   

3.
In this article, a phage-based magnetoelastic sensor for the detection of Salmonella typhimurium is reported. Filamentous bacteriophage specific to S. typhimurium was used as a biorecognition element in order to ensure specific and selective binding of bacteria onto the sensor surface. Phage was immobilized onto the surface of the sensors by physical adsorption. The phage immobilized magnetoelastic sensors were exposed to S. typhimurium cultures with different concentrations ranging from 5x10(1) to 5x10(8) cfu/ml, and the corresponding changes in resonance frequency response of the sensor were studied. It was experimentally established that the sensitivity of the magnetoelastic sensors was higher for sensors with smaller physical dimensions. An increase in sensitivity from 159 Hz/decade for a 2 mm sensor to 770 Hz/decade for a 1 mm sensor was observed. Scanning electron microscopy (SEM) analysis of previously assayed biosensors provided visual verification of frequency changes that were caused by S. typhimurium binding to phage immobilized on the sensor surface. The detection limit on the order of 10(3) cfu/ml was obtained for a sensor with dimensions 1x0.2x0.015 mm.  相似文献   

4.
One of the important applications for which phage-immobilized magnetoelastic (ME) biosensors are being developed is the wireless, on-site detection of pathogenic bacteria for food safety and bio-security. Until now, such biosensors have been constructed by immobilizing a landscape phage probe on gold-coated ME resonators via physical adsorption. Although the physical adsorption method is simple, the immobilization stability and surface coverage of phage probes on differently functionalized sensor surfaces need to be evaluated as a potential way to enhance the detection capabilities of the biosensors. As a model study, a filamentous fd-tet phage that specifically binds streptavidin was adsorbed on either bare or surface-functionalized gold-coated ME resonators. The surface functionalization was performed through the formation of three self-assembled monolayers with a different terminator, based on the sulfur-gold chemistry: AC (activated carboxy-terminated), ALD (aldehyde-terminated), and MT (methyl-terminated). The results, obtained by atomic force microscopy, showed that surface functionalization has a large effect on the surface phage coverage (46.8%, 49.4%, 4.2%, and 5.2% for bare, AC-, ALD-, and MT-functionalized resonators, respectively). In addition, a direct correlation of the observed surface phage coverage with the quantity of subsequently captured streptavidin-coated microbeads was found by scanning electron microscopy and by resonance frequency measurements of the biosensors. The differences in surface phage coverage on the differently functionalized surfaces may then be used to pattern the phage probe layer onto desired parts of the sensor surface to enhance the detection capabilities of ME biosensors.  相似文献   

5.

Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.

  相似文献   

6.
Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.  相似文献   

7.
Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodbome pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spreeta biosensor kits were used to detect Salmonella Typhimurium on chicken carcass successfully. A taste sensor like electronic tongue or biosensors was used to basically "taste" the object and differentiated one object from the other with different taste sensor signatures. The surface plasmon resonance biosensor has potential for use in rapid, real-time detection and identification of bacteria, and to study the interaction of organisms with dif- ferent antisera or other molecular species. The selectivity of the SPR biosensor was assayed using a series of antibody con- centrations and dilution series of the organism. The SPR biosensor showed promising to detect the existence of Salmonella Typhimurium at 1 x 106 CFU/ml. Initial results show that the SPR biosensor has the potential for its application in pathogenic bacteria monitoring. However, more tests need to be done to confirm the detection limitation.  相似文献   

8.
Surface plasmon resonance (SPR) biosensors are affinity sensing devices exploiting a special mode of electromagnetic field-surface plasmon-polariton-to detect the binding of analyte molecules from a liquid sample to biomolecular recognition elements immobilized on the surface of the sensor. In this paper, we review advances of SPR biosensor technology towards detection systems for the simultaneous detection of multiple analytes (multi-analyte detection). In addition, we report application of a recently developed multichannel SPR sensor based on spectroscopy of surface plasmons and wavelength division multiplexing of sensing channels to multi-analyte detection.  相似文献   

9.
In this article, we report the results of an investigation into the performance of a wireless, magnetoelastic biosensor designed to selectively detect Salmonella typhimurium in a mixed microbial population. The Langmuir-Blodgett (LB) monolayer technique was employed for antibody (specific to Salmonella sp.) immobilization on rectangular shaped strip magnetoelastic sensors (2 x 0.4 x 0.015 mm). Bacterial binding to the antibody on the sensor surface changes the resonance parameters, and these changes were quantified as a shift in the sensor's resonance frequency. Response of the sensors to increasing concentrations (5 x 10(1) to 5 x 10(8) cfu/ml) of S. typhimurium in a mixture of extraneous foodborne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes) was studied. A detection limit of 5 x 10(3) cfu/ml and a sensitivity of 139 Hz/decade were observed for the 2 x 0.4 x 0.015 mm sensors. Binding kinetics studies have shown that the dissociation constant (K(d)) and the binding valencies for water samples spiked with S. typhimurium was 435 cfu/ml and 2.33 respectively. The presence of extraneous microorganisms in the mixture did not produce an appreciable change in the biosensor's dose response behavior.  相似文献   

10.
Viruses are of high medical and biodefense concern and their detection at concentrations well below the threshold necessary to cause health hazards continues to be a challenge with respect to sensitivity, specificity, and selectivity. Ideally, assays for accurate and real time detection of viral agents would not necessitate any pre-processing of the analyte, which would make them applicable for example to bodily fluids (blood, sputum) and man-made as well as naturally occurring bodies of water (pools, rivers). We describe herein a robust biosensor that combines the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325MHz with the specificity provided by antibodies for the detection of viral agents. A lithium tantalate-based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against either Coxsackie virus B4 or the category A bioagent Sin Nombre virus (SNV), a member of the genus Hantavirus, family Bunyaviridae, negative-stranded RNA viruses. Rapid detection (within seconds) of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, although the sensor was approximately 5 x 10(5)-fold more sensitive for the detection of SNV. For both pathogens, the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1. The biosensor was able to detect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS). Further, in a proof-of-principle real world application, the SAW biosensor was capable to selectively detect SNV agents in complex solutions, such as naturally occurring bodies of water (river, sewage effluent) without analyte pre-processing. This is the first study that reports on the detection of viral agents using an antibody-based SAW biosensor that has the potential to be used as a hand-held and self-contained device for rapid viral detection in the field.  相似文献   

11.
检测食源性致病菌的生物传感器   总被引:2,自引:0,他引:2  
  大肠埃希氏菌、李斯特氏菌和鼠伤寒沙门氏菌等几种食源性致病菌不仅威胁到人们的 生命安全,还会造成巨大的社会经济损失.生物传感器是将生物识别元件和信号转换元件紧 密结合,从而检测目标化合物的分析装置.生物传感器在致病菌检测方面具有分析速度快、 灵敏度高、专一性强等特点;可分为光学式、电化学式、压电式生物传感器等;在检测食源 性致病菌方面生物传感器表现出能够满足实际应用的发展潜力,但是生物传感器目前仍面临 并需要解决一些问题,这也是生物传感器从实验室到市场如此缓慢的原因.最后提出了实际 检测应用中对生物传感器的要求.  相似文献   

12.
Surface plasmon resonance imaging (SPRi) has emerged as a versatile biosensor to detect a wide range of biomolecular interactions with divergent potential applications. However, the use of this advanced-level technology for stem cell lysate study is still not much explored. Cell lysates are significant biological analytes used for disease diagnostics and proteomic studies, but their complex nature limits their use as an analyte for SPRi biosensors. Here, we review the problems associated with the use of SPRi for stem cell lysate study and examine the role of surface chemistry, running buffer, and blocking solution in order to minimize nonspecific adsorption (NSA). We detect the expression of Oct4, Sox2, Nanog, Rex1, and Lin28 biomarkers present in mouse embryonic stem cell (mESC) lysate against their corresponding antibodies immobilized on the sensor surface with reduced NSA. The current study shows that the conjunction of SPRi and microarray can be used as a label-free, high-throughput, and rapid technique for detection of biomarkers and their relative abundance in stem cell lysate study.  相似文献   

13.
The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.  相似文献   

14.

Background  

Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance) by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV) type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor.  相似文献   

15.
Microbial biosensors.   总被引:18,自引:0,他引:18  
A microbial biosensor consists of a transducer in conjunction with immobilised viable or non-viable microbial cells. Non-viable cells obtained after permeabilisation or whole cells containing periplasmic enzymes have mostly been used as an economical substitute for enzymes. Viable cells make use of the respiratory and metabolic functions of the cell, the analyte to be monitored being either a substrate or an inhibitor of these processes. Bioluminescence-based microbial biosensors have also been developed using genetically engineered microorganisms constructed by fusing the lux gene with an inducible gene promoter for toxicity and bioavailability testing. In this review, some of the recent trends in microbial biosensors with reference to the advantages and limitations are been discussed. Some of the recent applications of microbial biosensors in environmental monitoring and for use in food, fermentation and allied fields have been reviewed. Prospective future microbial biosensor designs have also been identified.  相似文献   

16.
Recent advances in combinatorial chemistries have revolutionized approaches to drug candidate synthesis and screening. Combinatorial approaches are also beginning to be used to increase the performance of diagnostic devices for both clinical and field uses. The use of combinatorial technologies is motivated by a general desire to detect as many different pathogens using the smallest, most inexpensive and fastest system possible. We examine the potential for rational design approaches to enhance the performance and miniaturization of biosensors. We describe novel combinatorial biosensor systems, in addition to mathematical frameworks for their optimization and performance prediction. The biosensors are assumed to be composed of multiple detection channels with the following characteristics. Each channel has a single output and can be dynamically set to respond to some or all of a set of pathogens. Regardless of the number of pathogens detected, however, there is a single numerical output from a channel. We evaluate the amount of ambiguity of positive signals produced as a result of increasing both the number of channels and the number of pathogens detected per channel and the effect this ambiguity has on system performance. We further discuss strategies for disambiguating positive signals. Finally we cite specific biosensor configurations that exploit the findings above and compare them to “brute force” approaches. Overall we suggest the approach we refer to as “n-squared” to simultaneously optimize device cost, speed and reagent usage.  相似文献   

17.
The BARC biosensor applied to the detection of biological warfare agents   总被引:10,自引:0,他引:10  
The Bead ARray Counter (BARC) is a multi-analyte biosensor that uses DNA hybridization, magnetic microbeads, and giant magnetoresistive (GMR) sensors to detect and identify biological warfare agents. The current prototype is a table-top instrument consisting of a microfabricated chip (solid substrate) with an array of GMR sensors, a chip carrier board with electronics for lock-in detection, a fluidics cell and cartridge, and an electromagnet. DNA probes are patterned onto the solid substrate chip directly above the GMR sensors, and sample analyte containing complementary DNA hybridizes with the probes on the surface. Labeled, micron-sized magnetic beads are then injected that specifically bind to the sample DNA. A magnetic field is applied, removing any beads that are not specifically bound to the surface. The beads remaining on the surface are detected by the GMR sensors, and the intensity and location of the signal indicate the concentration and identity of pathogens present in the sample. The current BARC chip contains a 64-element sensor array, however, with recent advances in magnetoresistive technology, chips with millions of these GMR sensors will soon be commercially available, allowing simultaneous detection of thousands of analytes. Because each GMR sensor is capable of detecting a single magnetic bead, in theory, the BARC biosensor should be able to detect the presence of a single analyte molecule.  相似文献   

18.
We developed fluorescent biosensor systems that are either general or selective to fluoroquinolone antibiotics by using a single-chain variable-fragment (scFv) as a recognition element. The selectivity of these biosensors to fluoroquinolone antibiotics was rationally tuned through the structural modification on the pharmacophore of fluoroquinolone antibiotics and the subsequent selection of scFv receptor modules against these antibiotics-based antigens using phage display. The resulting A2 and F9 scFv's bound to their representative antigen with a moderate affinity (K(D) in micromolar range as determined by surface plasmon resonance). A2 is a specific binder for enrofloxacin and did not cross-react with other fluoroquinolone antibiotics including structurally similar ciprofloxacin, while F9 is a general fluoroquinolone binder that likely bound to the antigen at the common pyridone-carboxylic acid pharmacophore. These scFv-based receptors were successfully applied to the development of one-step fluorescent biosensor which can detect fluoroquinolone antibiotics at concentrations below the level suggested in animal drug application guidelines. The strategy described in this report can be applied to developing convenient field biosensors that can qualitatively detect overused/misused antibiotics in the livestock drinking water.  相似文献   

19.
AIMS: To evaluate the virulence gene nec1 as a reliable marker for the detection of pathogenic Streptomyces species on potato tubers and in soil samples using conventional and real-time quantitative PCR assays. Methods AND RESULTS: Two pairs of conventional primers (outer and nested) and one set of primers/probe for use in real-time PCR were designed to detect the necrogenic protein encoding nec1 gene of Streptomyces scabiei strain ATCC 49173(T). The conventional PCR primers were also incorporated into a multiplex PCR assay to simultaneously detect the nec1 gene in conjunction with the potato pathogens Helminthosporium solani and Colletotrichum coccodes. The specificity of each PCR assay was confirmed by testing 32 pathogenic and nonpathogenic reference strains of Streptomyces representing 12 different species and 74 uncharacterized streptomycete strains isolated from diseased tubers. A clear correlation between pathogenicity and the detection of nec1 by PCR was demonstrated. The sensitivity and specificity of both the conventional and real-time PCR assays allowed the detection of nec1 on potato tubers in the absence of visible symptoms of common scab, and in seeded soil down to a level equivalent to three S. scabiei spores per gram soil. CONCLUSIONS: Reliable and quantitative PCR techniques were developed in this study for the specific detection of the virulence gene nec1 of pathogenic Streptomyces species on potato tubers and in soil samples, and the data demonstrated a clear correlation between pathogenicity in Streptomyces species and the presence of the nec1 gene. SIGNIFICANCE AND IMPACT OF THE STUDY: Together with the DNA extraction protocols, these diagnostic methods will allow a rapid and accurate assessment of tuber and soil contamination by pathogenic Streptomyces species.  相似文献   

20.
病原菌的快速准确检测是实现疫情高效防控、疾病精准治疗、污染环境及时处置的关键。而现有的病原菌现场快速检测技术,主要以定性分析为主,假阳性/假阴性受到诟病,检测准确性仍有待提升,亟待发展基于新原理、新方法的病原菌快速检测技术。基于CRISPR(clustered regularly interspaced short palindromic repeats)的生物传感技术因具有高灵活性(对不同的基因靶点只需改变crRNA序列)、高特异性(单碱基分辨)、高灵敏(优于10-18 mol/L浓度)、可编程、可模块化、低成本、可在各种体外介质中高效稳定运行等独特优势,打破了传统分子诊断与检测技术的局限性,正在成为下一代病原菌检测技术的引领者。在该技术中,Cas效应蛋白被用作高特异性的序列识别元件,结合不同的生物传感机制,即可用于病原菌的高特异性快速灵敏检测。在总结CRISPR/Cas生物传感技术原理的基础上,综述了用于病原菌检测的CRISPR/Cas12和CRISPR/Cas13生物传感技术研究进展。通过阐述CRISPR/Cas生物传感技术在实际应用中面临的挑战,展望其未来的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号