首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of organic solvents on subtilisin Carlsberg catalysis has been investigated with the aid of a thermodynamic analysis. Saturation solubility experiments were performed to provide a quantitative measure of substrate desolvation from the reaction medium. This enabled calculation of the intrinsic enzymic activation energy and resulted in a linear free energy relationship with respect to solvent polarity. The results indicate that the intrinsic activation energy of subtilisin catalysis is lowest in polar organic solvents, which may be due to transition state stabilization of the enzyme's polar transition state for transesterification.  相似文献   

2.
Four kinds of N-dansyl-amino acid-modified beta-cyclodextrins (beta-CDs) were prepared as fluorescent chemosensors for chiral discrimination. The use of an amino acid as a spacer improved binding affinities and chiral discrimination abilities of the chemosensors. N-dansyl-l-Phe-modified beta-CD showed high d-selectivity for norbornane derivatives and N-dansyl-d-Phe-modified beta-CD showed high l-selectivity for menthol. Microcalorimetric titration results indicate that the chemosensors selectively accommodate the enantiomer that induces the least unfavorable entropy change on making an inclusion complex.  相似文献   

3.
Fluorescent molecular rotors belong to a group of twisted intramolecular charge transfer complexes (TICT) whose photophysical characteristics depend on their environment. In this study, the influence of solvent polarity and viscosity on several representative TICT compounds (three Coumarin derivatives, 4,4-dimethylaminobenzonitrile DMABN, 9-(dicyanovinyl)-julolidine DCVJ), was examined. While solvent polarity caused a bathochromic shift of peak emission in all compounds, this shift was lowest in the case of molecular rotors. Peak intensity was influenced strongly by solvent viscosity in DMABN and the molecular rotors, but polarity and viscosity influences cannot be separated with DMABN. Coumarins, on the other hand, did not show viscosity sensitivity. This study shows the unique suitability of molecular rotors as fluorescent viscosity sensors.  相似文献   

4.
A novel peptidyl chemosensor (PySO2-His-Gly-Gly-Lys(PySO2)-NH2, 1) was synthesized by incorporation of two pyrene (Py) fluorophores into the tetrapeptide using sulfonamide group. Compound 1 exhibited selective fluorescence response towards Hg(II) over the other metal ions in aqueous buffered solutions. Furthermore, 1 with the potent binding affinity (Kd = 120 nM) for Hg(II) detected Hg(II) without interference of other metal ions such as Ag(I), Cu(II), Cd(II), and Pb(II). The binding mode of 1 with Hg(II) was investigated by UV absorbance spectroscopy, 1H NMR titration experiment, and pH titration experiment. The addition of Hg(II) induced a significant decrease in both excimer and monomer emissions of the pyrene fluorescence. Hg(II) interacted with the sulfonamide groups and the imidazole group of His in the peptidyl chemosensor and then two pyrene fluorophores were close to each other in the peptide. The decrease of both excimer and monomer emission was mainly due to the excimer/monomer emission change by dimerization of two pyrene fluorophores and a quenching effect of Hg(II).  相似文献   

5.
Naphthalimide‐based fluorescent probes 1 and 2 were synthesized, and were designed to form probe–Hg complexes through Hg2+ ions coordinated to the amide group and imidazole group. They showed high sensitivity and were selective ‘naked‐eye’ chemosensors for Hg2+ in phosphate buffer. The fluorescence of compounds 1 and 2 could be quenched up to 90% by the addition of Hg2+. Reversible probes can detect Hg2+ ions over a wide pH range (7.0–10.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Two new rhodamine‐based fluorescent probes were synthesized and characterized by NMR, high resolution mass spectrometer (HR‐MS) and IR. The probes displayed a high selectivity for Fe3+ among environmentally and biologically relevant metal ions in aqueous solution (CH3OH–H2O = 3 : 2, v/v). The significant changes in the fluorescence color could be used for naked‐eye detection. Job's plot, IR and 1H NMR indicated the formation of 1: 1 complexes between sensor 1 and Fe3+. The reversibility establishes the potential of both probes as chemosensors for Fe3+ detection. The probe showed highly selectivity in aqueous solution and could be used over the pH range between 5 and 9. A simple paper test‐strip system for the rapid monitoring of Fe3+ was developed, indicating its convenient use in environmental samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Sensing of pyrophosphate ion (PPi) has received much attention due to the strong demand for clinical diagnostics. Here, based on gold nanoclusters (Au NCs), a ratiometric optical detection method for PPi is developed by simultaneously detecting the dual signals of fluorescence (FL) and second-order scattering (SOS). The PPi is detected by inhibiting the formation of aggregates of Fe3+ with Au NCs. Binding of Fe3+ to Au NCs causes aggregation of Au NCs, which leads to fluorescence quenching and scattering increasing. The presence of PPi can competitively bind Fe3+ to re-disperse the Au NCs and finally recover the fluorescence and reduce the scattering signal. The designed PPi sensor shows a high sensitivity with a linear range 5–50 μM and a detection limit of 1.2 μM. In addition, the assay has excellent selectivity for PPi, which makes its application in real biological samples extremely valuable.  相似文献   

8.
Two BODIPY derivatives for Cu2+ ion chemosensors containing 4-[2-(diethylamino)-2-oxoethoxy]phenyl (BDP1) and 3,4-bis[2-(diethylamino)-2-oxoethoxy]phenyl (BDP2) were synthesized by coupling appropriate N,N-diethyl-2-(4-formylphenoxy)acetamide and 2,4-dimethylpyrrole moieties in the presence of trifluoroacetic acid and anhydrous dichloromethane at room temperature. The binding abilities between these chemosensors and 50 equivalents of Na+, K+, Ag+, Ca2+, Fe2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions were studied using UV-vis and fluorescence spectrophotometry. The results show that, compared to other ions, both the UV-vis absorption and fluorescence emission intensity of BDP2 decreased dramatically when Cu2+ ion was added. To explain this behavior, ab initio quantum chemical calculations were performed using correlated second-order Møller-Plesset perturbation theory (MP2/LanL2DZ). The calculated orbital energies indicated that the decrease in UV-vis absorption intensity and the quenching of fluorescene emission were due to the single-electron reduction of Cu2+ to Cu+ ion.
Figure
Optimized structure, fluorescent spectra, frontier orbital energy diagrams and electron-transfer paths in receptor BDP2 before and after attachment to Cu2+ ion  相似文献   

9.
The secondary structure content of the COOH-terminal tryptic peptide of colicin E1 has been measured by analysis of UV circular dichroism spectra as a function of pH in aqueous medium and in the presence of the nonionic detergents octyl glucoside and Triton X-100. The alpha-helical content of the peptide increased by approximately 10%, from 45-47% to 56-57%, in the presence of the nonionic detergents, but not in aqueous medium, as the pH was decreased from 4.5 to 3.5. This pH dependence of conformation is similar to that reported elsewhere for the in vitro activity and binding of this peptide. A smaller increase in helical content was observed for the peptide in aqueous medium or in Triton X-100 as the pH was decreased from 6.5 to 4.5. The letter change in helical content was not seen in octyl glucoside which was present at a detergent:peptide stoichiometry 100 times that of Triton. The mean residue ellipticity measured at 222 nm for peptide added to asolectin vesicles by a freeze-thaw treatment was slightly larger at pH 3.5, and substantially larger at pH 4.5, than found at these pH values in the detergent solutions. Changes in helical content at the former, but not the latter pH, could be attributed to peptide insertion. It appears that protonation of one or more acidic amino acid residues in the COOH-terminal region of the molecule causes a conformational change that can be attributed to an extra helical domain that is stabilized in a nonpolar environment. From the similar pH dependence of the conformational change and in vitro binding and activity, it is inferred that interaction of this domain with the membrane is essential for binding and insertion.  相似文献   

10.
Jiao F  Yang W  Wang F  Tian L  Li L  Chen X  Mu K 《Chirality》2012,24(8):661-667
A method of solvent sublation was developed for the enantioseparation of racemic ofloxacin (rac Oflx) and racemic tryptophan (rac Trp). In this method, dibenzoyl-L-tartaric acid (L-DBTA) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) and sodium lauryl sulfate (SDS) were used as chiral coextractants and foamer, respectively. Several important parameters influencing the separation performances, such as pH in aqueous phase, concentrations of rac mixtures, L-DBTA, D2EHPA, and SDS, were investigated. Under the optimal operation conditions, the enantiomeric excess and enantioselectivity were 60.08% and 5.58 for Oflx and 65.09% and 6.31 for Trp, respectively. The yields of D-enantiomer and L-enantiomer were 34.23% and 8.54% for Oflx and 18.59% and 3.93% for Trp, respectively. The results suggest that the enantioselectivities have been enhanced compared with the traditional chiral extraction. This technique is an efficient chiral separation method, with many advantages such as low expenditures of organic solvent, low consumption of chiral extractant, and easy realization of multistage operation.  相似文献   

11.
The photophysical properties of 2-amino-9,10-anthraquinone (2AAQ) have been investigated in different solvents and solvent mixtures and correlated with the Lippert-Mataga solvent polarity parameter, Deltaf. In the low solvent polarity region with Deltaf < ca. 0.1, the dye shows unusually high fluorescence quantum yields (Phif) and lifetimes (tauf) in comparison to those in other solvents of medium to high polarities. Similarly, the radiative rate constants (kf) are relatively lower and the non-radiative rate constants (knr) are relatively higher in the low polarity solvents in comparison to those in the medium to high polarity solvents. The current results have been rationalized assuming that the dye adopts different structural forms below and above the Deltaf value of approximately 0.1. It is inferred that in the low solvent polarity region the dye exists in a non-planar structure, with its 2-NH2 plane away from that of the 9,10-anthraquinone moiety in the ground state. In solvents of medium to high polarities, the dye exists in a polar intramolecular charge transfer (ICT) structure, where the amino lone pair of the 2-NH2 group is in strong resonance with the anthraquinone pi-cloud in the ground state. In all the solvents, however the dye is inferred to exist in the ICT structure in its excited (S1) state. Supportive evidence for the above hypothesis has been obtained from the solvent polarity effect on the Stokes' shifts for the dye. Quantum chemical studies on the structures of 2AAQ dye in the gas phase also give qualitative support for the inferences drawn from the photophysical properties of the dye in different solvents.  相似文献   

12.
13.
《Process Biochemistry》2014,49(9):1393-1401
In this study, a microbial biosensor for hydrogen sulfide (H2S) detection based on Thiobacillus thioparus immobilized in a gelatin matrix was developed. The T. thioparus was immobilized via either surface adsorption on the gelatin matrix or entrapment in the matrix. The bacterial and gelatin concentration in the support were then varied in order to optimize the sensor response time and detection limit for both methods. The optimization was conducted by a statistical analysis of the measured biosensor response with various bacterial and polymer concentrations. According to our experiments with both immobilization methods, the optimized conditions for the entrapment method were found to be a gelatin concentration of 1% and an optical density of 82. For the surface adsorption method, 0.6% gelatin and an optical density of 88 were selected as the optimal conditions. A statistical model was developed based on the extent of the biosensor response in both methods of immobilization. The maximum change in the potential of the solution was 23.16 mV for the entrapment method and 34.34 mV for the surface absorption method. The response times for the entrapment and adsorption methods were 160 s and 105 s, respectively. The adsorption method is more advantageous for the development of a gas biosensor due to its shorter response time.  相似文献   

14.

Culpeo fox (Pseudalopex culpaeus) and gray fox (Pseudalopex griseus) are heavily culled in Patagonia. Fox populations seem to persist thanks to spatial refuges from which hunted areas are repopulated, following a source–sink dynamics. Sustainable use of Patagonian foxes warrants the design of a monitoring program in nature reserves and areas subjected to predator control. During 7 years, we used visitation indices to bait stations in a national park and neighboring sheep ranches of southern Argentina. We operated bait stations during three consecutive nights and calculated seven indices of relative abundance. For each fox species, we compared the power of different monitoring designs and scenarios that combined visitation indices, effort (number of bait station lines and survey frequency) while controlling for type I error, and magnitude of population change during a given period. We looked at the combinations that produced high power (β ≤ 0.24). The operation of bait stations during several nights markedly increased statistical power. Index 7 (recording visits 72 h after activation) exhibited the lowest variation and improved expected power to detect a population trend. Both fox species could be monitored simultaneously, with power >0.76 in the short term (5 years), activating 24 bait station lines. We conclude that monitoring programs for culpeo fox and gray fox based on bait stations are able to detect marked declines but are less useful to reliably detect moderate increases in abundance, especially in sheep ranches.

  相似文献   

15.
H2-producing microorganisms are a promising source of sustainable biohydrogen. However, most H2-producing microorganisms are anaerobes, which are difficult to cultivate and characterize. While several methods for measuring H2 exist, common H2 sensors often require oxygen, making them unsuitable for anaerobic processes. Other sensors can often not be operated at high gas humidity. Thus, we applied thermal conductivity (TC) sensors and developed a parallelized, online H2 monitoring for time-efficient characterization of H2 production by anaerobes. Since TC sensors are nonspecific for H2, the cross-sensitivity of the sensors was evaluated regarding temperature, gas humidity, and CO2 concentrations. The systems' measurement range was validated with two anaerobes: a high H2-producer (Clostridium pasteurianum) and a low H2-producer (Phocaeicola vulgatus). Online monitoring of H2 production in shake flask cultivations was demonstrated, and H2 transfer rates were derived. Combined with online CO2 and pressure measurements, molar gas balances of the cultivations were closed, and an anaerobic respiration quotient was calculated. Thus, insight into the effect of medium components and inhibitory cultivation conditions on H2 production with the model anaerobes was gained. The presented online H2 monitoring method can accelerate the characterization of anaerobes for biohydrogen production and reveal metabolic changes without expensive equipment and offline analysis.  相似文献   

16.
Phenylketonuria (PKU) is a disease characterized by an inability to metabolize the amino acid l-phenylalanine. The resulting buildup leads to brain damage and ultimately mental retardation in children if their phenylalanine intake is not carefully controlled. The National Institutes of Health recently suggested that people with PKU monitor their phenylalanine levels throughout their life and be put on a low phenylalanine diet. As an alternative approach to analysis using blood, this paper describes the first reagentless dehydrogenase based sensor for the determination of phenylalanine in human urine. The clinical range of phenylalanine in human urine is 20-60mM for people with PKU. Although most clinical analysis is performed using blood, urine was chosen due to its high concentrations of phenylalanine in phenylketonurics, as well as its simple, safe, and painless collection. The sensor is comprised of a carbon paste electrode with nicotinamide adenine dinucleotide (NAD(+)), phenylalanine dehydrogenase (PDH), uricase, and an electron mediator, 3,4-dihydroxybenzaldehyde (3,4-DHB), all mixed into the paste. The electron mediator reacts with the electrode surface to produce two redox species, which catalytically oxidize NADH. The behavior of the electron mediator mixed into a carbon paste electrode has not been previously investigated. Cyclic voltammetry was used to characterize the sensor's response to NADH, and with the addition of PDH and NAD(+) to the paste, its response to phenylalanine in human urine. The limit of detection for phenylalanine is 0.5mM (S/N=3).  相似文献   

17.
A novel ratiometric fluorescence nanosensor for superoxide anion (O2??) detection was designed with gold nanoparticles‐bovine serum albumin (AuNPs‐BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs‐BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs‐BSA acted as binding points for the self‐assembly of Tb3+ and GMP to form core‐shell AuNPs‐BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs‐BSA and Tb/GMP NCPs. The AuNPs‐BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O2??. The resulting AuNPs‐BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O2?? demonstrated high sensitivity and selectivity with a wide linear response range (14 nM–10 μM) and a low detection limit (4.7 nM).  相似文献   

18.
Xu G  Ye X  Qin L  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2005,20(9):1757-1763
Cell-based biosensors incorporate cells as sensing elements that convert changes in immediate environment to signals for processing. This paper reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible cell-base biosensor that will enable us to monitor extracellular action potential of single living cell under stimulant. In order to modify chip surface and immobilize cells, we coat a layer of poly-L-ornithine and laminin on surface of LAPS chip on which rat cortical cells are grown well. When 10 microg/ml acetylcholine solution is administrated, the light pointer is focused on a single neuronal cell and the extracellular action potential of the targeted cell is recorded with cell-based biosensor based on LAPS. The results demonstrate that this kind of biosensor has potential to monitor electrophysiology of living cell non-invasive for a long term, and to evaluate drugs primarily.  相似文献   

19.
Fluorescent chemosensors based on 4‐hydroxy cyclopentenones were synthesized by the base catalyzed reaction of 1,5‐diphenyl‐pentane‐1,3,5‐trione with benzil and thenil. The molecule obtained by the benzil reaction was found to be useful for the selective detection of Fe3+ by fluorescence turn‐off, while the molecule synthesized by the thenil reaction was useful for selective detection of Cu2+ by fluorescent turn‐on. Details of the synthesis, complexation mode, nature of binding, reversibility, and pH studies of the two sensors are discussed. The studies revealed that the sensors were suitable for determining Fe3+ and Cu2+ content in real water samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号