首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect was determined of organo-mineral detritus (OMD), one of the components of suspended mineral matter in aquatic ecosystems, on the production characteristics of bacterioplankton (bacterial production P b and destruction of organic matter R b, as well as bacterial growth efficiency BGE). The relation was determined between these parameters and the ratio of the content of suspended mineral matter M to the total organic carbon content (M/TOC). More active utilization of organic matter by bacterioplankton in the presence of OMD resulted in its positive effect on specific production characteristics of the phytoplankton.  相似文献   

2.
Attenuation of ultraviolet (UV)-radiation into the water column is highly correlated with the concentration of the dissolved organic matter (DOM). Thus UV penetrates deeper into marine waters than into freshwater systems. DOM is efficiently cleaved by solar surface radiation levels consuming more oxygen than bacterial metabolism. This photolytically cleaved DOM exhibits higher absorbance ratios (250/365 nm) than untreated DOM. Natural bacterioplankton reach higher abundance if inoculated in previously solar-exposed DOM than in untreated DOM; during bacterial growth the absorbance ratio declines steadily indicating the utilization of the photolytically cleaved DOM. On the other hand, bacterioplankton are greatly reduced in their activity if exposed to surface solar radiation levels. Photoenzymatic repair of DNA induced by UV-A radiation, however, leads to an efficient recovery of bacterial activity once the UV-B stress is released. Turbulent mixing of the upper layers of the water column leads to a continuous alteration of the UV exposure regime. Close to the surface, bacteria and DOM are exposed to high levels of UV-B leading to a reduction in bacterial activity and to photolysis of DOM. Once mixed into deeper layers where UV-B is attenuated, but sufficient UV-A is remaining to allow photoenzymatic repair, the photolytically cleaved DOM is efficiently taken up by bacterioplankton leading to even higher bacterial activity than prior to the exposure. Thus, the overall effect of UV on bacterioplankton is actually an enhancement of bacterial activity despite their lack of protective pigments.  相似文献   

3.
Abstract Microbial transformation of labile, low molecular weight dissolved organic matter (DOM) into dissolved humic matter (DHM) was studied in seawater. Surface water samples were amended with [14C into 14CO2, TO14C (total organic 14C), and PO14C (particulate organic 14C), was measured over time in confined samples. The humic and non-humic fractions of DO14C (dissolved organic 14C) were separated according to a common operational definition of DHM based on adsorption on XAD-8 macroporous resin. Both TO14C and non-humic DO14C decreased during the experiments. However, 14C-labelled DHM increased during the first week of the incubations, to a level where it comprised 15% of the TO14C remaining in the samples, or 3% of the initially added 14C. Towards the end of experiments (ca 70 days), the humic fraction of DO14C gradually approached the background level of poisoned control samples. Provided that the XAD-8 operational definition of DHM is accepted, this study indicates that humic matter may be formed in seawater within days from labile monomers such as glucose.  相似文献   

4.
Recent evidence suggests a key role of bacterioplankton in shaping the composition of the dissolved organic matter (DOM) pool in aquatic systems, not only through consumption but also through production of specific compounds, but the latter process is still not well understood. We used a bioassay approach to assess the patterns in bacterial production and consumption of five fluorescent DOM pools in seven lakes and two streams in Southeastern Québec, Canada, and the links these patterns may have with key aspects of bacterial metabolism, DOM origin and nutrients availability. Total dissolved organic C declined by 3-15% during these incubations, whereas the specific DOM pools had very different dynamics: Two humic-like fractions accumulated in all incubations, with rates of production increasing as a function of bacterial growth efficiency, which itself increased with phosphorus concentrations. In contrast, two protein-like fractions and a third humic-like fraction either increased or declined over the course of the experiments. The net production or consumption of these pools appeared to be a function of the contribution of terrestrial C to bulk DOM (derived from δ(13) C of the DOM) and of total bacterial activity. Our results suggest that lake bacterioplankton play a dual role in DOM dynamics, as consumers and also producers, and that the interplay between DOM origin and nutrient availability appears to determine the net outcome of bacterial DOM processing, thus influencing the bulk DOM composition and its fate in these aquatic systems.  相似文献   

5.
李娟  廖洪凯  龙健  陈彩云 《生态学报》2013,33(7):2147-2156
通过选取喀斯特山区火龙果园、草丛、花椒林、乔木林和灌草丛为研究对象,对其土壤团聚有机碳和团聚体活性有机碳分布与积累特征进行研究,结果表明:各土地利用方式下的团聚体组成均以>0.5 mm团聚体为主,其含量可占团聚体总量的82.57%-94.79%;各粒级团聚体中有机碳和活性有机碳的含量均以乔木林最高,花椒林和火龙果园相对居中,而以草丛和灌草丛较低,随土壤团聚体粒径降低,有机碳和活性有机碳的峰值基本出现在<0.25 mm粒级团聚体,但该粒径对土壤有机碳和活性有机碳的贡献率却不足6%和4%;土壤有机碳和活性有机碳的累积均受5-1 mm团聚体中有机碳和活性有机碳含量增加的影响,该粒级团聚体对有机碳和活性有机碳的贡献率也分别达28.70%-49.47%和34.13%-47.47%,可将5-1 mm粒径团聚体作为喀斯特山区的土壤有机碳固定的特征团聚体;土壤团聚体活性有机碳含量与土壤团聚体总有机碳含量呈极显著正相关关系(r=O.8768),表明团聚体活性有机碳可以作为衡量喀斯特山区土壤团聚体有机碳动态的一个敏感性指标.  相似文献   

6.
对贡嘎南山-拉轨岗日山南坡高寒草原生态系统表层(0~20cm)土壤活性有机碳分布特征研究表明:表层(0~20 cm)土壤活性有机碳平均为(2.4986±0.7864) g/kg,占表层土壤有机碳的(12.7926±21.00)%.在海拔4424~4804m范围内,随着海拔升高,表层(0~20cm)土壤活性有机碳含量表现出先减少后增加的分布特征,有机碳活度也表现出先减少后增加的分布特征.影响表层土壤活性有机碳含量最关键的环境因子是地上生物量、0~10cm地下生物量、30~40cm地下生物量、20~30cm土壤含水量、0~20cm土壤容重、20~40cm土壤容重和土壤全N量;影响表层土壤有机碳活度最关键的环境因子则是植被盖度、20~30cm地下生物量、0~10cm土壤含水量、10~20cm土壤含水量、20~30cm土壤含水量、土壤有机质、土壤速效K和土壤全N量.  相似文献   

7.
Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration.  相似文献   

8.
9.
Anaerobic degradation of organic matter follows similar pathways in digesters and anaerobic freshwater sediments. The responsible microorganisms are linked in a complex food web, where short chain fatty acids and H2 are important intermediates. Degradation of short-chain fatty acids is endothermic under standard conditions and is only possible at low H2 partial pressures maintained by exothermic methanogenesis. The coupling between these endothermic and exothermic processes is delicate, and hence sensitive to environmental changes such as temperature variations. The effect of temperature on thermodynamics and on kinetics of these and other anaerobic degradation processes with emphasis on freshwater ecosystems is discussed.The author is with the Department of General Microbiology, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83 H, DK-1307 Copenhagen K, Denmark  相似文献   

10.
Numerous investigations have been directed at verifying and calibrating methods for measuring bacterioplankton production, particularly methods based on the incorporation of thymidine (TdR) into DNA. Careful examination of these data can provide insights into other aspects of the ecology of aerobic heterotrophic microbial communities. Once method-specific biases are eliminated, these measurements indicate that there are broad-scale patterns in the metabolic fate of TdR, differences that seem to reflect broad differences in community metabolic capabilities. Based on work conducted primarily in San Francisco and Tomales Bays, California, I suggest that the metabolic fate of TdR in a given environment may reflect the relative importance to bacterioplankton nutrition of detritus versus fresh phytoplankton carbon. This is probably due to differences in community composition that result from growth on qualitatively different carbon sources. If true, the metabolic fate of TdR may provide a broadly applicable, but simple, index that can be used to assess the relative importance of these general sources of organic matter. Such an index could be very useful in characterizing lacustrine, estuarine, and nearshore environments.  相似文献   

11.
Effective isolation of freshwater bacterioplankton belonging to genus Polynucleobacter from a shallow eutrophic lake and its tributary was achieved by size-selective filtration with a 0.7-μm pore filter and cultivation on R2A agar medium. Partial 16S rRNA gene analysis showed that over 80% of all the strains were highly similar to the Polynucleobacter cluster. Essential medium components for effective cultivation are pyruvate, yeast extract and peptone, whereas soluble starch and glucose are not necessary. Isolate KF001 (affiliated with Polynucleobacter subcluster D) has a strict requirement for organic acids as carbon sources, and we hypothesize that the Polynucleobacter cluster of bacteria could utilize compounds formed via photochemically dissolved organic matter (DOM) degradation for growth. Because organic acids form from solar radiation of DOM in aquatic environments, carbon sources that are typical products of DOM photochemical degradation were added to the medium. These compounds were readily utilized by KF001 in this study. Finally, we observed the stimulation of strain KF001 activity by photochemical degradation of natural lake water. Our findings suggest a carbon flow of DOM photoproducts to Polynucleobacter in the freshwater microbial loop.  相似文献   

12.
There is great controversy regarding the best substrate (fresh or anaerobically digested swine slurry) for the development of microalgae–bacteria consortia. This study aims to elucidate the best substrate by assessing biomass productivity, microorganism predominance, and their ability for organic matter removal. In addition to the different substrates, different operational conditions and influent strengths were evaluated. Increasing organic matter content when favourable temperature and illumination conditions were present improved biomass production. However, these conditions were not favourable for microalgal growth, but they were favourable for bacteria. Regardless of the operational conditions, reactors fed with fresh slurry not only resulted in the highest biomass productivity, but also the greatest removal of total and soluble chemical oxygen demand (COD). On the other hand, reactors fed with digested slurry showed biomass productivity and COD removal values lower than those obtained for reactors fed with fresh slurry, most probably due to the recalcitrant nature of the former. Nevertheless, digested slurry was the substrate more appropriate for microalgae growth under harsh operational conditions (16 °C and 9-h illumination) at low influent strength and optimum operational conditions (30 °C and 24-h illumination) at higher influent strength.  相似文献   

13.
It has been suggested that autochthonous (internally produced) organic carbon and allochthonous (externally produced) organic carbon are utilized by phylogenetically different bacterioplankton. We examined the relationship between the source of organic matter and the structure and function of lake bacterial communities. Differences and seasonal changes in bacterial community composition in two lakes differing in their source of organic matter were followed in relation to environmental variables. We also performed batch culture experiments with amendments of various organic substrates, namely fulvic acids, leachates from algae, and birch and maple leaves. Differences in bacterial community composition between the lakes, analysed by terminal restriction fragment length polymorphism, correlated with variables related to the relative loading of autochthonous and allochthonous carbon (water colour, dissolved organic carbon, nutrients, and pH). Seasonal changes correlated with temperature, chlorophyll and dissolved organic carbon in both lakes. The substrate amendments led to differences in both structure and function, i.e. production, respiration and growth yield, of the bacterial community. In conclusion, our results suggest that the source of organic matter influences community composition both within and among lakes and that there may be a coupling between the structure and function of the bacterial community.  相似文献   

14.
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The samples of water and bottom sediments of the East Siberian and Chukchi Seas collected during the second Russian-American RUSALCA expedition were used to analyze patterns of the isotopic composition of carbon in the organic matter (OM) of suspended material (SOM) and bottom sediments (BOM). Similar to other marine environments, the SOM isotopic composition depended on the ratio between the terrigenous and planktonic OM, both in the water body as a whole and in its parts. Thus, in the East Siberian Sea the carbon of SOM was poorer in 13C (??13C = ?24.51??) than the open part of the more productive Chukchi Sea (??13C = ?22.16??). In the less productive coastal waters of the Chukchi Sea, the ratio of terrigenous OM increased, resulting in a ??13C shift to lower values (?23.40??). Due to the influx of reduced products of anaerobic diagenesis of the sediments, elevated total number of microorganisms and dark CO2 fixation were found in the near-bottom water at the water-sediment biogeochemical barrier. The newly formed biomass of autotrophic microorganisms shifted the carbon isotopic composition of the near-bottom suspended material to more positive ??13C values, with the average values of ?23.39 and ?20.37?? for the East Siberian and Chukchi Sea, respectively. Changes in the carbon isotopic composition of OM resulting from microbial activity continued in the upper sediment layers. When the rate of biomass synthesis increased that of biomass consumption, the 13C content increased further. At higher rates of OM mineralization, 12C accumulated in its remaining part.  相似文献   

17.
Soil organic matter (SOM) mineralization processes are central to the functioning of soils in relation to feedbacks with atmospheric CO2 concentration, to sustainable nutrient supply, to structural stability and in supporting biodiversity. Recognition that labile C‐inputs to soil (e.g. plant‐derived) can significantly affect mineralization of SOM (‘priming effects’) complicates prediction of environmental and land‐use change effects on SOM dynamics and soil C‐balance. The aim of this study is to construct response functions for SOM priming to labile C (glucose) addition rates, for four contrasting soils. Six rates of glucose (3 atm% 13C) addition (in the range 0–1 mg glucose g?1 soil day?1) were applied for 8 days. Soil CO2 efflux was partitioned into SOM‐ and glucose‐derived components by isotopic mass balance, allowing quantification of SOM priming over time for each soil type. Priming effects resulting from pool substitution effects in the microbial biomass (‘apparent priming’) were accounted for by determining treatment effects on microbial biomass size and isotopic composition. In general, SOM priming increased with glucose addition rate, approaching maximum rates specific for each soil (up to 200%). Where glucose additions saturated microbial utilization capacity (>0.5 mg glucose g?1 soil), priming was a soil‐specific function of glucose mineralization rate. At low to intermediate glucose addition rates, the magnitude (and direction) of priming effects was more variable. These results are consistent with the view that SOM priming is supported by the availability of labile C, that priming is not a ubiquitous function of all components of microbial communities and that soils differ in the extent to which labile C stimulates priming. That priming effects can be represented as response functions to labile C addition rates may be a means of their explicit representation in soil C‐models. However, these response functions are soil‐specific and may be affected by several interacting factors at lower addition rates.  相似文献   

18.
Misra  S. G.  Pande  Padmakar 《Plant and Soil》1974,40(3):679-684
Summary Additions of organic matter to a red soil resulted in the solubilization of the native and added nickel during the early days of its decomposition due to the production of various organic acids. It has been observed that as the incubation period advanced, more and more nickel was transformed into less soluble form so that after 80 days, only 8.1–8.8 and 14.1 ppm nickel could be recovered with berseem and glucose respectively when added along with 100 ppm nickel. The berseem has been found to have a tendency to fix greater amount of nickel in the soil than glucose. The available phosphate in the soil was also found to increase initially and then decrease. A greater content of organic carbon in the berseem-treated soil was closely related to the fixation of nickel in the soil. Formation of a complex between nickel and organic matter has been envisaged. re]19730806  相似文献   

19.
Three different methods for analyzing natural microbial community diversity were combined to maximize an estimate of the richness of bacterioplankton catabolizing riverine dissolved organic matter (RDOM). We also evaluated the ability of culture-dependent quantitative DNA-DNA hybridization, a 16S rRNA gene clone library, and denaturing gradient gel electrophoresis (DGGE) to detect bacterial taxa in the same sample. Forty-two different cultivatable strains were isolated from rich and poor solid media. In addition, 50 unique clones were obtained by cloning of the bacterial 16S rDNA gene amplified by PCR from the community DNA into an Escherichia coli vector. Twenty-three unique bands were sequenced from 12 DGGE profiles, excluding a composite fuzzy band of the Cytophaga-Flavobacterium group. The different methods gave similar distributions of taxa at the genus level and higher. However, the match at the species level among the methods was poor, and only one species was identified by all three methods. Consequently, all three methods identified unique subsets of bacterial species, amounting to a total richness of 97 operational taxonomic units in the experimental system. The confidence in the results was, however, dependent on the current precision of the phylogenetic determination and definition of the species. Bacterial consumers of RDOM in the studied estuary were primarily both cultivatable and uncultivable taxa of the Cytophaga-Flavobacterium group, a concordant result among the methods applied. Culture-independent methods also suggested several not-yet-cultivated beta-proteobacteria to be RDOM consumers.  相似文献   

20.
有机物料对白浆土微团聚体组成及其养分含量的影响   总被引:5,自引:2,他引:5  
通过长期盆栽试验,研究了施用有机物料对白浆土各粒径微团聚体及其养分的影响。结果表明,施加有机物料能明显减少<1与1~2μm小粒径微团聚体和促进2~5μm与5~10μm粒径微团聚体的形成,提高各粒径微团体中有机碳和全N的含量,后二者主要分布于小粒径的微团聚体中。小粒径微团聚体中的全P含量较高,随着粒径增大,P含量呈下降趋势,在10~50μm粒径处最低,随后又呈上升趋势。其中<1、1~2和5~10μm各粒径中的P含量与土壤有效P呈显着正相关。牛粪对白浆土微团聚体组成及其养分含量的影响好于麦秸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号