首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotianamine (NA) is an intermediate in the biosynthetic pathway of the mugineic acid family phytosiderophores (MAs), which are crucial components of the iron acquisition apparatus of graminaceous plants. In non-graminaceous plants, NA is thought to be an essential chelator for metal cation homeostasis. Thus NA plays a key role in Fe metabolism and homeostasis in all higher plants. Nicotianamine synthase (NAS, EC 2.5.1.43) catalyzes the trimerization of S-adenosylmethionine to form one molecule of NA. Barley, a plant that is resistant to Fe deficiency, secretes large amounts of MAs, whereas rice, a plant that is susceptible to Fe deficiency, secretes only small amounts. In this study we isolated a genomic fragment containing HvNAS1 from barley and three rice cDNA clones, osnas1, osnas2 and osnas3, from Fe-deficient rice roots. We also isolated a genomic fragment containing both OsNAS1 and OsNAS2. In contrast to barley, in which Fe deficiency induces the expression of NAS genes only in roots, Fe deficiency in rice induced NAS gene expression in both roots and chlorotic leaves. The amounts of endogenous NA in both the roots and leaves were higher than in barley. We introduced barley genomic DNA fragments containing HvNAS1 with either 9 or 2 kb of the 5'-flanking region into rice, using Agrobacterium-mediated transformation. Fe deficiency induced HvNAS1 expression in both roots and leaves of the transgenic rice, as occurs with rice NAS genes. Barley and rice NAS genes are compared in a discussion of alteration of the NAS genes during adaptation to Fe deficiency.  相似文献   

2.
Summary The combination of low Mn levels and high Fe levels in tissues of lowland rice varieties, as often encountered when rice is grown on acid soils, is not likely to result from an antagonistic effect of Fe on the uptake of Mn.Experiments with rice plants growing on sand, supplied with Fe and Mn, and subjected to various pH levels and moisture regimes, made it clear that under acid anaerobic conditions the absorption of Mn by rice plants is little affected by the presence of large quantities of Fe, and that under acid aerobic conditions the absorption of Fe by rice plants is little affected by the presence of large quantities of Mn.  相似文献   

3.
4.
Swarup  Anand 《Plant and Soil》1993,155(1):477-480
A field experiment was conducted to evaluate the effect of three levels of Fe and two levels of Zn, and their combinations, on the growth, yield and Fe, Zn, and Mn nutrition of rice on a zinc deficient sodic soil amended with gypsum. Iron and zinc were supplied as sulphates. Application of Zn significantly enhanced the yield of rice and available soil and plant Zn irrespective of Fe application. Maximum response of rice to Zn was obtained when Fe was applied at the highest rate. While Fe application brought about a significant improvement in available soil and plant Fe and Mn, it decreased significantly Zn content of the crop. After crop harvest, recovery of added Fe was 20% and Zn 12%. Results suggest that benefits of Fe application to rice in sodic soils can only be realised if it is applied along with Zn.  相似文献   

5.
Plants experience low phosphorus (P) and high iron (Fe) levels in acidic lowland soils that lead to reduced crop productivity. A better understanding of the relationship between these two stresses at molecular and physiological level will lead to development of suitable strategies to increase crop productivity in such poor soils. Tolerance for most abiotic stresses including P deficiency and Fe toxicity is a quantitative trait in rice. Recent studies in the areas of physiology, genetics, and overall metabolic pathways in response to P deficiency of rice plants have improved our understanding of low P tolerance. Phosphorous uptake and P use efficiency are the two key traits for improving P deficiency tolerance. In the case of Fe toxicity tolerance, QTLs have been reported but the identity and role played by underlying genes is just emerging. Details pertaining to Fe deficiency tolerance in rice are well worked out including genes involved in Fe sensing and uptake. But, how rice copes with Fe toxicity is not clearly understood. This review focuses on the progress made in understanding these key environmental stresses. Finally, an opinion on the key genes which can be targeted for this stress is provided.  相似文献   

6.
Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+   总被引:4,自引:0,他引:4  
Only graminaceous monocots possess the Strategy II iron (Fe)-uptake system in which Fe is absorbed by roots as an Fe3+-phytosiderophore. In spite of being a Strategy II plant, however, rice (Oryza sativa) contains the previously identified Fe2+ transporter OsIRT1. In this study, we isolated the OsIRT2 gene from rice, which is highly homologous to OsIRT1. Real-time PCR analysis revealed that OsIRT1 and OsIRT2 are expressed predominantly in roots, and these transporters are induced by low-Fe conditions. When expressed in yeast (Saccharomyces cerevisiae) cells, OsIRT2 cDNA reversed the growth defects of a yeast Fe-uptake mutant. This was similar to the effect of OsIRT1 cDNA. OsIRT1- and OsIRT2-green fluorescent protein fusion proteins localized to the plasma membrane when transiently expressed in onion (Allium cepa L.) epidermal cells. OsIRT1 promoter-GUS analysis revealed that OsIRT1 is expressed in the epidermis and exodermis of the elongating zone and in the inner layer of the cortex of the mature zone of Fe-deficient roots. OsIRT1 expression was also detected in the ccompanion cells. Analysis using the positron-emitting tracer imaging system showed that rice plants are able to take up both an Fe3+-phytosiderophore and Fe2+. This result indicates that, in addition to absorbing an Fe3+-phytosiderophore, rice possesses a novel Fe-uptake system that directly absorbs the Fe2+, a strategy that is advantageous for growth in submerged conditions.  相似文献   

7.
Poorly crystalline Fe in soil has been shown to affect Fe and P availability. Oxalate extractable Fe, a measure of poorly crystalline Fe oxides, has not been compared to soil test methods for Fe and P in rice soils. Twenty eight soils used for rice production were incubated under aerobic and anaerobic soil conditions and extracted for Fe and P with ammonium oxalate, ammonium acetate-EDTA (AA-EDTA), ammonium bicarbonate-DTPA (AB-DTPA) and DTPA. Citrate-dithionite extractable Fe and Fe content of rice plants in a greenhouse experiment were also determined. Soils used in this experiment had a large amount of poorly-crystalline Fe oxide. In some soils, poorly-crystalline Fe constituted 60% of the citrate-dithionite extractable Fe. The amount of extractable Fe and P increased significantly under anaerobic conditions. The relationships between extractants showed that DTPA Fe was highly correlated to AB-DTPA Fe and oxalate Fe was highly correlated to AA-EDTA Fe. There was no relationship between Fe and P extracted by AB-DTPA, while there was a better relationship with ammonium oxalate and AA-EDTA extractants. Poorly-crystalline Fe and P extracted by ammonium oxalate were correlated.  相似文献   

8.
用AAS方法测定了弥勒县相同生态条件下种植的27份有色稻和34份普通稻糙米4种矿质元素含量,并对有色米和普通米Fe、Zn、Cu和Mn含量进行了比较研究。结果表明,有色稻米4种矿质元素含量明显高于无色稻米,其差异均达显著水平,其含量高低依次为Zn>Fe>Cu>Mn;对黑、褐、红、黄、绿5种不同种皮颜色的稻米4种矿质元素含量进行比较研究,发现稻米Fe含量(mg/kg)依次为黑>绿>褐>红>黄,Zn含量(mg/kg)依次为绿>红>黑>褐>黄,Cu含量(mg/kg)依次为黑>褐>红>黄>绿,Mn含量(mg/kg)依次为褐>黑>红>黄>绿;并且Fe和Mn含量在不同颜色稻米间差异均达显著水平,与有色米种皮颜色密切相关,而Zn和Cu差异不显著,与有色米种皮颜色关系不大。黑米和褐米富Fe、Zn、Cu和Mn,绿米富Fe和Zn,红米富Zn和Cu,黄米4种矿质元素含量较低,Fe、Cu和Mn均低于普通稻米。  相似文献   

9.
Nicotianamine,a Novel Enhancer of Rice Iron Bioavailability to Humans   总被引:1,自引:0,他引:1  

Background

Polished rice is a staple food for over 50% of the world''s population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world.

Methodology/Principal Findings

We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1∶1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis.

Conclusions

Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.  相似文献   

10.
Cheng L  Wang F  Shou H  Huang F  Zheng L  He F  Li J  Zhao FJ  Ueno D  Ma JF  Wu P 《Plant physiology》2007,145(4):1647-1657
Higher plants acquire iron (Fe) from the rhizosphere through two strategies. Strategy II, employed by graminaceous plants, involves secretion of phytosiderophores (e.g. deoxymugineic acid in rice [Oryza sativa]) by roots to solubilize Fe(III) in soil. In addition to taking up Fe in the form of Fe(III)-phytosiderophore, rice also possesses the strategy I-like system that may absorb Fe(II) directly. Through mutant screening, we isolated a rice mutant that could not grow with Fe(III)-citrate as the sole Fe source, but was able to grow when Fe(II)-EDTA was supplied. Surprisingly, the mutant accumulated more Fe and other divalent metals in roots and shoots than the wild type when both were supplied with EDTA-Fe(II) or grown under water-logged field conditions. Furthermore, the mutant had a significantly higher concentration of Fe in both unpolished and polished grains than the wild type. Using the map-based cloning method, we identified a point mutation in a gene encoding nicotianamine aminotransferase (NAAT1), which was responsible for the mutant phenotype. Because of the loss of function of NAAT1, the mutant failed to produce deoxymugineic acid and could not absorb Fe(III) efficiently. In contrast, nicotianamine, the substrate for NAAT1, accumulated markedly in roots and shoots of the mutant. Microarray analysis showed that the expression of a number of the genes involved in Fe(II) acquisition was greatly stimulated in the naat1 mutant. Our results demonstrate that disruption of deoxymugineic acid biosynthesis can stimulate Fe(II) acquisition and increase iron accumulation in rice.  相似文献   

11.
本文以根盒试验与盆栽试验相结合的方法,研究了红壤性水稻土、淀浆白土、第四纪红土和赤红壤植稻后根际微生态系统中Si、Fe、Mn和Al等元素的状况及其与水稻生长的关系。结果表明,新垦红壤植稻后根际中活性Fe和Al富集;活性Mn量降低,但亏缺率小;活性Si则亏缺不明显,有时甚至富集。而熟化水稻土植稻后根际中活性Fe和Al则出现亏缺;Mn的亏缺较大,且差值明显;活性Si的亏缺现象更为显著。由于新垦红壤植稻后Fe和Al在根际微生态系统中富集,根茎叶中累积量较高,从而使Si、P和Mn等元素的吸收受阻,导致新垦红壤上水稻生长明显比熟化水稻土上的水稻要差。  相似文献   

12.
Rice is one of the most important staple crops and efficient iron (Fe) adsorption during growth not only improves rice yield, but also enriches this essential micronutrient in rice grains to address Fe deficiency in humans. In this article, we review updates on research into the molecular mechanisms regulating Fe uptake from soil and its transport from roots to shoots to seeds in rice plants. Understanding the regulation and expression of genes involved in Fe homeostasis will benefit the development of variants with enhanced Fe utilization to improve rice output and quality.  相似文献   

13.
根际中硅,铁,锰和铝的状况与水稻生长   总被引:11,自引:2,他引:9  
本文以根盒试验与盆栽试验相结合的方法,研究了红壤性水稻土、淀浆白土、第四纪红土和赤红壤植稻后根际微生态系统中Si、Fe、Mn和Al等元素的状况及其与水稻生长的关系。结果表明,新垦红壤植稻后根际中活性Fe和Al富集;活性Mn量降低,但亏缺率小;活性Si则亏缺不明显,有时甚至富集。而熟化水稻土植稻后根际中活性Fe和Al则出现亏缺;Mn的亏缺较大,且差值明显;活性Si的亏缺现象更为显著。由于新垦红壤植稻后Fe和Al在根际微生态系统中富集,根茎叶中累积量较高,从而使Si、P和Mn等元素的吸收受阻,导致新垦红壤上水稻生长明显比熟化水稻土上的水稻要差。  相似文献   

14.
Fe is an essential mineral element that plants need for their growth. When there is low soil availability of Fe, plants show severe deficiency symptoms. Under Fe-deficiency conditions, plants alter a number of processes to acquire Fe from soil. Genes involved in these mechanisms have been identified from different model plants, including Arabidopsis and rice. Fe transport within plants is also tightly regulated. In this study, we used H9405, a cultivar of rice with high Fe accumulation in seeds, and Yangdao 6, a cultivar with low seed Fe accumulation, to study their responses under different Fe conditions. Our results showed that genes involved in acquisition of Fe from soil in these two cultivars were both up-regulated in roots under Fe-deficiency conditions, and the elevation of the expression was much higher in Yangdao 6 than in H9405. However, remobilization-related genes in shoot vasculature were expressed in an opposite way between the two cultivars. In H9405, the expression of these genes was up-regulated; but in Yangdao 6, their expression was reduced. Our results showed that the differential expression of root-uptake and shoot-remobilization genes in the two cultivars is correlated to the Fe content in roots, shoots, and seeds. Strategies to biofortify rice cultivars with different characteristics were also discussed based on our discovery.  相似文献   

15.
Soil and crop management strategies to prevent iron deficiency in crops   总被引:5,自引:0,他引:5  
Plants and humans cannot easily acquire iron from their nutrient sources although it is abundant in nature. Thus, iron deficiency is one of the major limiting factors affecting crop yields, food quality and human nutrition. Therefore, approaches need to be developed to increase Fe uptake by roots, transfer to edible plant portions and absorption by humans from plant food sources. Integrated strategies for soil and crop management are attractive not only for improving growing conditions for crops but also for exploiting a plant??s potential for Fe mobilization and utilization. Recent research progress in soil and crop management has provided the means to resolve complex plant Fe nutritional problems through manipulating the rhizosphere (e.g., rhizosphere fertilization and water regulation), and crop management (includes managing cropping systems and screening for Fe efficient species and varieties). Some simple and effective soil management practices, termed ??rhizosphere fertilization?? (such as root feeding and bag fertilization) have been developed and widely used by local farmers in China to improve the Fe nutrition of fruit plants. Production practices for rice cultivation are shifting from paddy-rice to aerobic rice to make more efficient use of irrigation water. This shift has brought about increases in Fe deficiency in rice, a new challenge depressing iron availability in rice and reducing Fe supplies to humans. Current crop management strategies addressing Fe deficiency include Fe foliar application, trunk injection, plant breeding for enriched Fe crop species and varieties, and selection of cropping systems. Managing cropping systems, such as intercropping strategies may have numerous advantages in terms of increasing Fe availability to plants. Studies of intercropping systems on peanut/maize, wheat/chickpea and guava/sorghum or -maize increased Fe content of crops and their seed, which suggests that a reasonable intercropping system of iron-efficient species could prevent or mitigate Fe deficiency in Fe-inefficient plants. This review provides a comprehensive comparison of the strategies that have been developed to address Fe deficiency and discusses the most recent advance in soil and crop management to improve the Fe nutrition of crops. These proofs of concept studies will serve as the basis for future Fe research and for integrated and optimized management strategies to alleviate Fe deficiency in farmers?? fields.  相似文献   

16.
Overcoming Fe deficiency by a transgenic approach in rice   总被引:2,自引:0,他引:2  
Iron (Fe) is an essential microelement for plant growth. Fe availability is particularly limited on calcareous soils, which have high pH. Approximately 30% of the world's soils are considered calcareous with low Fe availability, which results in extensive areas of Fe deficiency in plants. Some graminaceous plants are known to secrete high amounts of mugineic acid family phytosiderophores (MAs) under Fe deficiency. This Fe acquisition system is called the Strategy-II mechanism. Tolerance to Fe deficiency in graminaceous plants is thought to depend on the quantity of MAs secreted by plants under Fe deficiency stress. This system was utilized to enhance the tolerance of rice to low Fe availability. Transgenic rice expressing the barley naat genes, one of the genes for the enzymes on the biosynthetic pathway of MAs, showed tolerance to low Fe availability when grown in a calcareous soil.  相似文献   

17.
Wu C  Ye Z  Li H  Wu S  Deng D  Zhu Y  Wong M 《Journal of experimental botany》2012,63(8):2961-2970
Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.  相似文献   

18.
W.-J. Liu  Y.-G. Zhu  F.A. Smith 《Plant and Soil》2005,277(1-2):127-138
We have shown previously that phosphorus nutrition and iron plaque on the surface of rice roots influence arsenate uptake and translocation by rice in hydroponic culture. We have now investigated the role of iron (Fe) and manganese (Mn) plaque on arsenate and arsenite uptake and translocation in rice seedlings grown hydroponically. Fe and Mn plaques were clearly visible as reddish or brown coatings on the root surface after 12 h induction, and Fe plaque was much more apparent than Mn plaque. Arsenite or arsenate supply did not decrease plant dry weights significantly. There were significant differences in shoot dry weights but little difference in root dry weights between some plaque treatments. Arsenic (As) concentrations in Fe plaque when arsenate was supplied were significantly higher than those in no plaque (control) and Mn plaque treatments, and much higher than those supplied with arsenite. This showed that Fe plaque on the rice root had higher affinity to arsenate than to arsenite. In Fe plaque treatment, the results indicated that most As was sequestered in roots when arsenite was supplied and most As concentrated in Fe plaque when arsenate was supplied. Most As was accumulated in rice roots in Mn plaque and no plaque treatments for both As species.  相似文献   

19.
pH值和Fe、Cd处理对水稻根际及根表Fe、Cd吸附行为的影响   总被引:2,自引:0,他引:2  
刘丹青  陈雪  杨亚洲  王淑  李玉姣  胡浩  张春华  葛滢 《生态学报》2013,33(14):4306-4314
通过营养液-蛭石联合培养试验,设置系列pH值(4.5—7.5)和Fe、Cd处理,研究不同pH值及Fe、Cd浓度对水稻和蛭石表面Fe、Cd吸附的影响。结果表明,不同pH值处理下的根际氧化还原电位和酸度不同,0.9 mg/L Cd处理下的根际氧化势低于0.5 mg/L Cd,50 mg/L Fe处理下的根际酸度高于30 mg/L Fe处理。根表吸附Fe、Cd组分和数量都受根际Eh、pH值制约,根表Fe、Cd吸附量在处理pH值6.0时最低,并分别在处理pH值7.5和处理pH值4.5达到最高。但根系表面对Fe、Cd的吸附机制与蛭石表面不同,蛭石吸附Fe主要为晶态Fe,占到总沉积Fe的73%—87%;水稻根表沉积Fe以非晶态Fe为主,占总沉积Fe的91%—95%;与处理pH值和根际Eh间有显著的相关性(蛭石晶态Fe:ppH=0.011、pEh=0.042;水稻根表非晶态Fe:ppH=0.050、pEh=0.004)。蛭石表面交换态Fe及交换态Cd与处理pH值和Eh间存在显著的相关性(pH值:pFe<0.001、pCd=0.009;Eh:pFe=0.016、pCd=0.002),而根表交换态Fe及交换态Cd仅与处理pH值间有显著的相关性(pFe=0.007,pCd=0.048)。不同Fe、Cd浓度处理对根际Eh、pH值的升降和根表Fe、Cd吸附均有影响。与对照相比,增Cd处理可以降低根际Eh和升高pH值,减少溶液Cd浓度并增加根表Cd吸附量;增Fe处理则可以升高根际Eh和降低pH值,增加溶液Fe、Cd浓度并减少根表Fe、Cd吸附量。这是水稻应对Fe、Cd浓度胁迫的生理反应之一。  相似文献   

20.
Malnutrition is considered as major public health concern and is emerging challenge to food and nutrition security particularly in developing countries. Rice is the staple food and consumed by the half of the world's population which is the source of daily requirement of the nutrients. Attempts are being made to fortify rice with micronutrients, but the loss or retention of these micronutrients in different cooking methods is not well studied and documented especially in fortified rice. In the present study, paddy seeds of six Indian varieties were fortified with iron and zinc by parboiling process. Consequently, fortified polished rice had higher micronutrient contents (Fe, 106.31 ± 12.56; Zn, 97.72 ± 9.75) than non-fortified polished rice (Fe, 7.44 ± 1.05; Zn, 14.74 ± 2.94) expressed in ppm. Polished rice of both fortified and non-fortified were cooked under five different cooking conditions and analyzed for remaining iron and zinc content. Cooking rice in rice cooker without prior washing (NRC) retained highest concentration of Fe and Zinc in both fortified and non-fortified rice varieties. It also showed that fortified rice suffered higher percentage loss of micronutrient, than the non-fortified rice. But the average retained micronutrient amount measured in ppm, was higher in fortified rice (Fe, 43.54 ± 6.88; Zn, 36.7 ± 3.12) than in non-fortified rice (Fe, 4.24 ± 0.87; Zn, 9.3 ± 2.11). Hence, adopting appropriate cooking method, higher amount of micronutrients will be retained in the cooked food which will in turn help in combating the malnutrition and improve health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号