首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Cytomixis is a common phenomenon observed in meiotic cells such as anther which is influenced by various factors. Use of pesticides is a common practice in agriculture. However, it is not known whether pesticides can induce cytomixis in plant cells and induce genetic variation. To understand this, the present study was planned to assess the cytomixis and syncytes behaviors in PMCs of Pisum sativum L. Seeds of P. sativum (Family: Fabaceae) were treated with different concentrations of commonly used pesticides methomyl (ME), imbraclaobrid (IM) and clethodim (CL). Seeds were treated with various concentrations (0.1, 0.2, 0.3, 0.4 and 0.5% of ME, IM and CL prepared in water) for 1 and 3 h. Effect of pesticides on pollen fertility, frequency of cytomixis, and kind of cytomixis cells was assessed. In the cytomixis cells, the cytomictic channel (CC) and direct fusion (DF), and various stages of meiosis (PI, MI, AI and TI) with cytomixis cells were observed. In addition, frequency of syncytes cell and their various stages of meiosis I (PI, MI, AI and TI) in pollen mother cells (PMCs) was assessed. During the microsporogenesis in P. sativum, the occurrence of cytomixis and syncytes at various stages of meiosis I were seen. The formation of cytoplasmic channels and direct fusing of pollen mother cells (PMCs) were both seen to cause cytomixis, with the former being more common than the latter. The percentage of PMCs with cytomixis and syncytes cells increased with increase in the concentration of pesticides. The result of the present investigation indicates that commonly used pesticides ME, IM, and CL have a significant effect on pollen fertility, frequency of cytomixis, and kind of cytomixis cells, the cytomictic channel (CC) and direct fusion (DF), in addition, frequency of syncytes cell and their various stages of meiosis I (PI, MI, AI and TI) in pollen mother cells (PMCs) on P. sativum.  相似文献   

7.
In yeast, Rad21/Scc1 and its meiotic variant Rec8 are key players in the establishment and subsequent dissolution of sister chromatid cohesion for mitosis and meiosis, respectively, which are essential for chromosome segregation. Unlike yeast, our identification revealed that the rice genome has 4 RAD21-like genes that share lower than 21% identity at polypeptide levels, and each is present as a single copy in this genome. Here we describe our analysis of the function of OsRAD21-4 by RNAi. Western blot analyses indicated that the protein was most abundant in young flowers and less in leaves and buds but absent in roots. In flowers, the expression was further defined to premeiotic pollen mother cells (PMCs) and meiotic PMCs of anthers. Meiotic chromosome behaviors were monitored from male meiocytes of OsRAD21-4-deficient lines mediated by RNAi. The male meiocytes showed multiple aberrant events at meiotic prophase I, including over-condensation of chromosomes, precocious segregation of homologues and chromosome fragmentation. Fluorescence in situ hybridization experiments revealed that the deficient lines were defective in homologous pairing and cohesion at sister chromatid arms. These defects resulted in unequal chromosome segregation and aberrant spore generation. These observations suggest that OsRad21-4 is essential for efficient meiosis.  相似文献   

8.
9.
10.
11.
With improved staining and chromosome preparation techniques, meiosis of pollen mother cells (PMCs) and male gametophyte development in autotetraploid cucumber (Cucumis sativus L.) was studied to understand the correlation between chromosomes behaviour and fertility. Various chromosome configurations, e.g. multivalent, quadrivalents, trivalents, bivalents and univalents were observed in most PMCs at metaphase I. Lagging chromosomes were frequently observed at anaphase in both meiotic divisions. In addition, chromosomes segregations were not synchronous and equal in some PMCs during anaphase II and telophase II. Dyads, triads, tetrads with micronuclei and polyads were observed at tetrad stage, and the frequencies of normal tetrad with four microcytes were only 55.4 %. The frequency of abnormal behaviour in each stage of meiosis was counted, and the average value was 37.2 %. The normal meiotic process could be accomplished to form the microspore tetrads via simultaneous cytokinesis. Most microspores could develop into fertile gametophytes with 2 cells and 3 germ pores through the following stages: single-nucleus early stage, single-nucleus late stage and 2-celled stage. The frequency of abnormalities was low during the process of male gametophyte development. The germination rate of pollen grains was 46.9 %. These results suggested that abnormal meiosis in PMCs was the reason for low pollen fertility in the autotetraploid cucumber.  相似文献   

12.
13.

Key message

Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D.

Abstract

This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis–leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
  相似文献   

14.
In flowering plants, meiocytes develop from subepidermal cells in anthers and ovules. The mechanisms that integrate gene-regulatory processes with meiotic programs during reproductive development remain poorly characterized. Here, we show that Arabidopsis thaliana plants deficient in ACTIN-RELATED PROTEIN6 (ARP6), a subunit of the SWR1 ATP-dependent chromatin-remodeling complex, exhibit defects in prophase I of female meiosis. We found that this meiotic defect is likely due to dysregulated expression of meiotic genes, particularly those involved in meiotic recombination, including DMC1 (DISRUPTED MEIOTIC cDNA1). Analysis of DMC1 expression in arp6 mutant plants indicated that ARP6 inhibits expression of DMC1 in the megasporocyte and surrounding nonsporogeneous ovule cells before meiosis. After cells enter meiosis, however, ARP6 activates DMC1 expression specifically in the megasporocyte even as it continues to inhibit DMC1 expression in the nonsporogenous ovule cells. We further show that deposition of the histone variant H2A.Z, mediated by the SWR1 chromatin-remodeling complex at the DMC1 gene body, requires ARP6. Therefore, ARP6 regulates female meiosis by determining the spatial and temporal patterns of gene expression required for proper meiosis during ovule development.  相似文献   

15.
Summary Male sterility in Pennisetum americanum (L.) Leeke, inbred line IP 482, was found to be inherited as a monofactorial recessive phenotype. Homozygosity for the gene designated ms 2, produced in addition to pollen abortion, plasmodial tapetum, plasmodial pollen mother cells, delayed and asynchronous meiotic development, desynapsis and blockage of meiosis. Plasmodial PMCs resulted from the fusion of PMCs at pachytene.  相似文献   

16.
17.
18.
19.
Cytomixis was recorded during microsporogenesis in sesame (Sesamum indicum L.), a member of the family Pedaliaceae. The phenomenon of cytomixis was observed at various stages of meiosis in 0.5% sodium azide (SA) treated populations of Sesamum indicum L. Cytomixis was observed to occur through various methods, i.e. by forming cytoplasmic channels and direct fusion of pollen mother cells (PMCs), the former was more frequent than the latter. The migration of nuclear content involved all the chromatin/chromosomes or part of it from donor to recipient cell/cells. Some completely empty meiocytes were also observed. Stickiness, precocious movement, laggards, unorientation and micronuclei were observed in almost all the sets treated with various doses of SA. Increase in the doses of SA had a positive effect on the percentage of PMCs showing cytomixis and chromosomal abnormalities. The impact of cytomixis on meiotic behaviour, reduced pollen viability and heterogeneous sized pollen grains were observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号