首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hatching induced by root diffusate, obtained from various potato genotypes, and by standard potato root diffusate, was determined in vitro. The used potato genotypes differed considerably in tolerance to Globodera pallida. A three parameter logistic model was used to describe the numbers of hatched juveniles in relation to time of exposure to root diffusate. Clear differences in hatching characteristics between genotypes were found. Some tolerant genotypes induced hatching of G. pallida juveniles relatively slowly, compared to intolerant genotypes. Other tolerant genotypes, however, induced hatching as fast as intolerant genotypes, and no significant correlation between hatching parameters and tolerance was found.  相似文献   

2.
Seven trials conducted over four years on sites naturally infested with the white potato cyst nematode established that potato clones bred for resistance to Globodera pallida allowed significantly less nematode multiplication than conventional cultivars under field conditions. Nematode multiplication was inversely related to initial infestation level. The nematicide, aldicarb, significantly reduced nematode multiplication. However, nematode multiplication on nematicide treated susceptible cultivars was greater than on untreated partially resistant clones, indicating that resistance may offer more effective control of G. pallida than chemical treatment. Integration of host plant resistance and nematicide treatment is discussed.  相似文献   

3.
In pots, 25 populations of potato pale cyst-nematode, Globodera pallida Stone, differed significantly in their ability to multiply on potato clones P55/7 and ZC83/ 6, both fully resistant to G. pallida pathotype Pal. Neither clone was fully resistant to any of the populations. For 21 populations common to this and an earlier experiment, increase on the more resistant potatoes (P55/7, ZC83/6, cvs Sante, Paladin and Glenna) was correlated with their increase on less resistant potatoes (cvs Morag, Fingal and Valiant). Variation in virulence on these partially resistant potatoes was not matched by differences in the electrophoretic patterns of the nematodes' proteins. The identification of populations of G. rostochiensis (Woll.) Skarbilovich used in these experiments was confirmed by electrophoresis. All populations of G. pallida Stone, appeared to contain very small numbers of G. rostochiensis after subculture on susceptible potatoes (cv. Désirée).  相似文献   

4.
The hatching responses of Globodera rostochiensis (golden potato cyst nematode) to purified and partially-purified preparations of natural (including the potato glycoalkaloids solanine and α-chaconine) and artificial hatching factors (HFs) were bimodal. At least 10 HFs, mostly anionic, were resolved from potato root leachate by a combination of gel permeation and ion-exchange chromatography. Whereas potato roots were the principal source of HFs, haulm leachate also contained such chemicals. Root leachate from aseptically-grown potato plants lacked several HFs which were present in conventionally-produced leachate.  相似文献   

5.
Random amplified polymorphic DNA (RAPD) has been used to investigate the interrelationships of 20 populations of Globodera pallida collected originally from field soils around the UK. RAPD analysis revealed a high level of relative genomic diversity within British G. pallida but there was no general correlation of genomic similarity with geographic distribution. Two populations of pathotype Pa1 were clearly divergent from the bulk of G. pallida and might represent a distinct introduction. Two other populations, from Scotland and Wales, were also dissimilar from each other and from the rest of the G. pallida populations.  相似文献   

6.
In a comparison of four potato varieties, in-soil hatch of the golden potato cyst nematode (Globodera rostochiensis) was positively correlated to in vitro hatch in response to potato root leachate (PRL). The in-soil hatch of cysts of G. rostochiensis to two of the four varieties was significantly less than that of the control (cysts in gravel without potato plants) in the first 2 wk after plant emergence, suggesting the production of hatching inhibitors (HIs) by young potato plants. The hatching factor: hatching inhibitor ratio of PRL was positively associated with the net hatching activity of the PRL. Four zones of HI activity were resolved following gel permeation chromatography of PRL on Sephadex G-10. Hatch-inactive chemicals, which stimulated the activity of hatching factors (HFs) in PRL (hatching factor stimulants, HSs), were also isolated from PRL, hatch levels induced by individual HFs responding differently to the same HS preparation. The complex interactions between individual HFs and other hatching chemicals in PRL was illustrated when addition of the hatch-active potato glycoalkaloid α-solanine caused both inhibition and stimulation of PRL-induced hatch, depending on the α-solanine concentration.  相似文献   

7.
Fosthiazate (Nemathorin 10G Ishihara Sangyo Kaisha Ltd, Japan) is a new nematicide approved for use on potatoes Solanum tuberosum L. in die UK for die control of die potato cyst nematodes Globodera rostochiensis (Woll). Skarbilovich and G. pallida (Stone). Fosdiiazate delayed and suppressed hatch of die potato cyst nematode Globodera pallida in bom in vitro laboratory tests and a glasshouse pot experiment. In vitro hatch was temporarily inhibited by fosdiiazate concentrations above 0.09 μg ml-1 and increasing me fosdiiazate concentration further prolonged the duration of hatch inhibition. Analysis of fosthiazate soil concentrations, using high-pressure liquid chromatography, during me glasshouse experiment showed mat hatch was suppressed in the soil at concentrations above 0.5 mg kg-1. Other factors such as the paralysis of hatched nematodes in the soil solution are also involved.  相似文献   

8.
Selection for virulence in the potato cyst-nematode, Globodera pallida   总被引:2,自引:0,他引:2  
The ability of six populations of Globodera pallida to multiply on Solanum vernei hybrids (Morag, 12380 2, Glenna and Santé) and S. tuberosum andigena hybrids (A 27/23, Paladin (ZB 35/29) and ZC 83/6) was studied in microplots and pots. Evidence was obtained of selection for virulence in one population after one year's cultivation of cvs Glenna or Morag. Similarly, after four years' continuous cultivation of cvs Morag or ZC 83/6 in microplots, three of five populations of G. pallida contained more virulent nematodes than the same populations maintained for the same period on cv. Pentland Crown (susceptible to G. pallida). These results are discussed in relation to earlier work and the use of partially resistant cultivars in the integrated control of G. pallida.  相似文献   

9.
Eight trials were conducted in commercial potato fields infested with the white potato cyst nematode (wPCN, Globodera pallida) and one in a field infested with the yellow PCN (yPCN, Globodera rostochiensis). Our aims were to produce data to validate and refine a computer‐based program (The Model) for the long‐term management of PCN, to determine nematicide effectiveness and to assess rates of PCN population decline between potato crops. Prior to planting, each farmer applied an overall nematicide treatment to his field, except for ten untreated plots that were widely spaced to encompass a range of PCN population densities. Each untreated plot was paired with a similar plot in the adjacent treated area and all plots were intensively sampled for PCN population densities at planting (Pi) and again at harvest (Pf) when tuber yields were determined. Four trials were re‐sampled 2–4 years later to determine PCN population decline rates. Regressions that form the basis of ‘The Model’ and described the relationship between Pi and tuber yield and PCN population density at harvest were fitted to the results from both the untreated and nematicide treated plots. These regressions also enabled us to estimate the yield potential at each site in the absence of PCN and showed that nematicide treatment generally did not increase yield potential and that both tuber yield and PCN multiplication decreased with increasing Pi. However, there were major differences between sites and cultivars. When untreated, the yield of cv. Maris Piper was hardly affected in a highly organic soil with Pi > 200 eggs g?1 whereas the yield of partially resistant cv. Santé was decreased from a potential of c. 60 t ha?1 to c. 20 t ha?1 in a light silt with Pi = 20 egg g?1 soil. Similarly, untreated wPCN multiplication rates at a low Pi ranged from 46‐fold to >100‐fold. Nematicide effectiveness was estimated from the regressions and, at several sites, yield was decreased despite nematicide treatment. Control of wPCN multiplication was even poorer. In only two of seven trials planted with susceptible cultivars was more than 50% control achieved – maximum populations in treated plots usually exceeded 250 eggs g?1. Partially resistant Santé decreased the multiplication rate of wPCN in the two trials where it was planted. An alternative analysis using Genstat indicated that The Model tended to underestimate the maximum multiplication rate and overestimate the maximum population density. When four sites were re‐sampled 2–4 years after harvest the populations of wPCN had declined by between 15% and 33.5% per annum with a mean of 26% per annum. Modelling indicated that rotations longer than 8 years were required to control wPCN unless other effective control measures, such as growing a partially resistant cultivar, were used.  相似文献   

10.
Six cultivars of potato (Santé, Morag, Paladin, Glenna and Fingal bred for resistance to both potato cyst-nematodes (Globodera rostochiensis and G. pallida) and Valiant bred for resistance to G. pallida alone) were exposed to 28 English populations of G. pallida and eight English populations of G. rostochiensis in pots. Susceptible cv. Désirée potatoes served as controls for all 36 populations. Inoculum (Pi) was 12000 eggs in cysts per 400ml pot of soil. Average increase of G. rostochiensis (Pf/Pi) on cv. Désirée was 23.5 but on cvs Sante, Glenna and Fingal it was < 1.0 and on cv. Morag it was 2.2. In contrast, cvs Paladin and Valiant were susceptible (average Pf/Pi = 17.4 and 26.5, respectively). Against G. pallida populations, average Pf/Pi for cv. Désirée was 21.7; on cvs Paladin, Santé and Glenna it was 2.9, 2.6 and 2.4, respectively; cvs Morag and Fingal were less resistant (7.4 and 5.6, respectively) and cv. Valiant was quite susceptible (11.0). Resistance to the different populations of G. pallida and G. rostochiensis varied but for the most resistant cultivars (Santé, Glenna and Paladin) the variation was usually small. The value of the six resistant cultivars studied to the integrated control of potato cyst-nematodes in England and the genetic diversity of the nematode populations to which they were exposed are discussed.  相似文献   

11.
Selection of Globodera pallida populations on resistant Solanum vernei-hybrids resulted in distinct virulent strains after eleven generations. Some of these virulent populations were assessed on their environmental fitness under field-type conditions. All reproduced less well in unsterilised soil, but virulent populations were less affected by environmental variation than their avirulent counterparts. Evaluation of their reproductive ability could not equate virulence to overall enhanced or reduced genotypic fitness compared with their avirulent counterparts. These populations were shown to be genetically distinct from their unselected counterparts using isoelectric focusing and specific enzyme staining. The control and management of virulent G. pallida populations is discussed.  相似文献   

12.
Field experiments at Harper Adams, Shropshire and Wisbech, Cambridgeshire investigated the effect of nematicide incorporation and seed tuber planting depth on the yield of the potato (Solamum tuberosum L.) cultivars Estima and Maris Piper and the population control of the potato cyst nematodes Globodera rostochiensis Woll. (Skarbilovich) and G. pallida (Stone). The nematicide fosthiazate was applied at 3 kg?1 ha and either not incorporated, or incorporated to 20 cm or 35 cm. Potatoes were mechanically planted to three depths; approximately 10 cm, 15 cm and 25 cm. Incorporation to 20 cm with tubers planted at a depth of 10 cm or 15 cm, reduced root invasion compared with the other treatments. Incorporating nematicide to 20 cm also gave consistently higher ware yields and better nematode control than the other incorporation methods, which were not significantly different to the control. However, ware yield and nematode multiplication rate were not significantly affected by planting depth.  相似文献   

13.
The effects of planting date and growing period of potato cultivars on their efficiency as trap crops for potato cyst nematodes (PCN) were studied. Plots were planted with susceptible or resistant cultivars in April, June and August and these were grown for 5, 6 or 7 wk before removal of the plants by hand lifting. Crops planted in June provided the best overall reductions in PCN population density of up to 95%, with cv. Santé significantly more effective than the other cultivars. Population reductions from the August planting were only slightly less than from planting in June but the tuber yields obtained were much greater: Maris Piper and Maris Bard produced 16.4 and 21.4 t ha-1 respectively, with 37% and 43% respectively, of a size useful for canning (i.e. between 20 and 40 mm diameter).  相似文献   

14.
Thirty populations of potato cyst nematode (Globodera spp.) from the Island of Tenerife and two populations from the UK were assessed for several morphometric and non-morphometric characters thought to discriminate between the species G. rostochiensis and G. pallida. Also 200 cysts from each population were analysed by isoelectric focusing of soluble proteins. Correlation analysis, analysis of variance and principal component analysis were used to investigate relationships between the morphometric characters, how the relationships varied between species and between populations, and which characters were most useful for discriminating between species. The two species differed significantly for each of the four morphometric characters: stylet length, fenestra length, anus-fenestra distance and the number of ridges. The stylet length and fenestra length also showed differences between populations of G. rostochiensis while stylet length and number of ridges showed differences between populations of C. pallida. In general, populations of G. pallida showed greater variation than populations of C. rostochiensis. Principal component analysis of the population means indicated that over 73% of the variation in the characters could be explained by the contrast of stylet and fenestra lengths against the anus-fenestra distance and number of ridges. A plot of the first two principal components separated the two species. Stepwise discriminant analysis provided a linear combination of these four variables which discriminated between the species. Stylet length was found to be the most useful characteristic for distinguishing the species whilst anus-fenestra distance was the least useful.  相似文献   

15.
Abstract. Net photosynthesis and transpiration rates of potato plants, grown in pots in the greenhouse, were measured at various light irradiances and ambient CO2 concentrations, 3d after inoculation with second stage juveniles of Globodera pallida. Gas exchange rates, both in darkness and in light, and the initial light use efficiency were strongly reduced by nematodes. Stomatal conductance of infected plants was lower than that of control plants and showed little response to decreasing ambient CO2 concentration. The maximum internal CO2 concentration of infected plants was lower than that of control plants. Globodera pallida reduced photosynthesis also by apparent non-stomatal effects.
The effects of G. pallida on gas exchange rates are similar to the effects of abscisic acid in the transpiration stream and of abiotic stresses in the root environment. Apparently, there is a general response of plant roots to adverse conditions. The reduction of photosynthesis may be an important factor in yield reduction by potato cyst nematodes.  相似文献   

16.
Inoculation of microplants of potato cv. Golden Wonder with Vaminoc, a mycorrhizal inoculum of three arbuscular mycorrhizal fungi (Glomus spp.), resulted in an increase in in‐sand hatch of Globodera pallida, but not G. rostochiensis, within 2 weeks. By this time, mycorrhized plants also supported a larger number of feeding nematodes of both PCN species (50% higher for G. rostochiensis) than did non‐mycorrhized plants, with a higher proportion of the G. pallida population being fertilised females than for G. rostochiensis. After 12 weeks, the multiplication rate of G. rostochiensis on mycorrhized plants was significantly greater than on non‐mycorrhized plants, whereas no such difference was observed for G. pallida. The principal component of PCN multiplication affected by mycorrhization was increased cyst number per plant from 6 to 12 weeks. Over this period, there was no increase in cyst number per plant for either PCN species on non‐mycorrhized plants, whereas the value increased on mycorrhized plants for both G. rostochiensis (by almost 200%) and G. pallida (57%). Mycorrhization resulted in significant increases in the root and shoot dry weights of plants grown in the absence of PCN. Although mycorrhized plants carried a larger PCN burden than non‐mycorrhized plants when grown on PCN‐infested medium, as a result of the increased PCN multiplication rate, they produced larger root systems than did nonmycorrhized plants, suggesting increased tolerance to PCN of the mycorrhized plants, particularly to G. rostochiensis. Of morphological characters investigated in the absence of PCN, only stem height (increased) was significantly affected by mycorrhization. Colonisation by mycorrhizal fungi resulted in increased tuber yield both in the absence (significant increase) and presence (non significant) of PCN, as a result of increased tuber number per plant. These results are discussed in the light of the possible use of AMF as part of an integrated PCN management plan.  相似文献   

17.
Two experiments were conducted over 2 years in commercial potato fields in Shropshire, UK, to evaluate the compatibility of the nematicide aldicarb with commercial inocula of arbuscular mycorrhizal fungi (AMF) in the control of the potato cyst nematode Globodera pallida. The AMF used were Vaminoc (mixed-AMF inoculum), Glomus intraradices (BioRize BB-E) and G. mosseae (isolate BEG 12). In the absence of AMF, the in-soil hatch of G. pallida increased 30% (P < 0.01) from wk-2 to wk-4 after planting. Inoculation of physiologically-aged potato (cv. Golden Wonder) tubers with AMF eliminated this delay in G. pallida hatch by stimulating a mean increase of 32% (P < 0.01) in hatch within 2 wk after planting. In the aldicarb-treated plots in Experiment 1, G. pallida multiplication rate was 38% lower (P < 0.05) in roots of AMF-inoculated than noninoculated plants, but in Experiment 2, this effect was slightly lower (P = 0.07). In these plots, the single AMF inocula showed also a weak trend (P = 0.10) towards greater tuber yields relative to their noninoculated counterparts. Mycorrhization therefore appears to enhance the efficacy of carbamate nematicides against G. pallida and consequently more research is proposed to validate these findings and fully explore the potential of this model.  相似文献   

18.
A field experiment in which main‐crop potatoes were grown every other year was conducted on a sandy soil from 1994 to 1999. The aim of the experiment was to control soil‐borne pathogens of potato with ecologically sound methods. Potato grown as a trap crop from the end of April to the end of June (8 wk) was used to control potato cyst nematodes (PCN) (Globodera pallida), and its effects on other important soil pathogens and on the growth of a subsequent potato crop were also assessed. Additional experimental treatments were a potato crop from which the haulm was removed and a green manure crop. Three potato cultivars with different degrees of resistance to PCN were grown as the main crop. Duplicate sets of the experiment were run concurrently. The PCN were effectively controlled by the potato trap crop. When a highly resistant potato cultivar was grown as a main crop after the trap crop, the post‐harvest soil infestation was very low. When a moderately resistant cultivar was grown after the trap crop the soil infestation also remained low. When the trap crop was alternated with a susceptible potato cultivar as a main crop, soil infestation increased slightly, but the degree of control when compared with no trap crop averaged 96%. Soil infestation with root‐knot nematodes (mainly Meloidogyne hapla) increased when potato was grown as a trap crop, but soil infestation with the root‐lesion nematode Pratylenchus crenatus was not affected. Stem canker caused by Rhizoctonia solani was not affected by the trap crop but black scurf (sclerotia of R. solani) on tubers was reduced. Soil infestation with Verticillium dahliae declined in one of the duplicate sets of the experiment but not in the other. However, stem infections by V. dahliae were significantly decreased in both sets, although the effect depended on the PCN‐resistance level of the potato cultivar. When a highly resistant potato cultivar was grown Verticillium stem infections were not significantly affected, they were decreased with a moderately resistant cultivar but the decrease was most pronounced with a PCN‐susceptible cultivar. Senescence of a following potato crop was not influenced by the trap crop when a highly PCN‐resistant cultivar was grown, but it was delayed in the case of a moderately resistant or a susceptible cultivar, resulting in higher tuber yields for those cultivars. The experiment proved that a trap crop can be an alternative to chemical soil disinfection but, for several reasons, the potato itself is not an ideal crop for this purpose; a trap crop other than potato must be developed.  相似文献   

19.
Laboratory, pot and field experiments investigated the effects of the fungus Zygorrhynchus moelleri on the growth of potato and on the reproduction of the potato cyst nematodes (PCN), Globodera pallida and G rostochiensis. Preliminary laboratory tests showed that Z. moelleri growth was favoured by temperatures and pH ranges commonly present in field soils. The fungus colonised potato roots in vitro and in compost or field soil. It also stimulated in vitro root growth of three potato cultivars. In pot experiments Z. moelleri stimulated potato growth, particularly in the presence of PCN attack. In field plots infested with a mixture of G pallida and G. rostochiensis, tuber yields were not increased after application of the fungus but, in G pallida‐infested plots, yields were significantly increased after drills were inoculated with Z. moelleri. The application of Z. moelleri had no apparent effects on nematode reproduction. Factors influencing the interactions between Z. moelleri, potato and potato cyst nematodes are discussed and the potential role of the fungus as a plant growth promoter in organic potato production considered.  相似文献   

20.
The concept of using a range of Solanaceae potato clones as trap crops for potato cyst nematode (PCN) management was investigated. A series of field trials were undertaken from 1999 to 2002 that evaluated 10 clones of either wild Solanum potato species, breeder’s hybrid lines or commercial cultivars. All had high resistance to all known PCN pathotypes (both Globodera rostochiensis and Globodera pallida) and the ability to stimulate high levels of PCN hatch. Investigations showed potential for the development of some clones as a means of reducing high PCN field population levels and for use by organic potato producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号