首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Requirements for a fragment of a random process taken for spectral analysis are formulated. It has been demonstrated that both the random process and its periodic components should be stationary within the fragment selected. Only in this case will the results of spectral analysis reflect the actual characteristics of the process studied. Variations in the depth of breathing and other factors have been shown to cause modulatory fluctuations of the HF and LF waves of the cardiac rhythm. The modulatory fluctuations are expressed as the VLF peak in the heart rate variability spectrum, the position of the peak on the frequency axis and its amplitude being determined by the frequency and depth of modulation, respectively. Depending on the modulation depth and the ratio between the modulation period and the length of the sample studied, spectral analysis of the same process may yield considerably different results. The ambiguity of the results of spectral analysis is the cause of discrepancy about the nature of individual spectral components of heart rate variability.  相似文献   

2.
The power spectral analysis of R-R interval variability (RRV) has been estimated by means of an autoregressive method in seven sedentary males at rest, during steady-state cycle exercise at 21 percent maximal oxygen uptake (%VO2max), SEM 2%, 49% VO2max, SEM 2% and 70% VO2max, SEM 2% and during recovery. The RRV, i.e. the absolute power of the spectrum, decreased 10, 100 and 500 times in the three exercise intensities, returning to resting value during recovery. In the RRV power spectrum three components have been identified: (1) high frequency peak (HF), central frequency about 0.24 Hz at rest and recovery, and 0.28 Hz, SEM 0.02, 0.37 Hz, SEM 0.03 and 0.48 Hz, SEM 0.06 during the three exercise intensities, respectively; (2) low frequency peak (LF), central frequency about 0.1 Hz independent of the metabolic state; (3) very low frequency component (VLF), less than 0.05 Hz, no peak observed. The HF peak power, as a percentage of the total power (HF%), averaged 16%, SEM 5% at rest and did not change during exercise, whereas during recovery it decreased to 5%-10%. The LF% and VLF% were about 50% and 35% at rest and during low exercise intensity, respectively. At higher intensities, LF% decreased to 16% and VLF% increased to 70%. During recovery a return to resting values occurred. The HF component may reflect the increased respiratory rate and the LF peak changes the resetting of the baroreceptor reflex with exercise. The hypothesis is made that VLF fluctuations in heart rate might be partially mediated by the sympathetic system.  相似文献   

3.
We assessed the sympatho-vagal activities of the heart after administration of capsaicin by measuring the power spectral analysis in rats. There were major two frequency components of heart rate variability, which we defined as high (1.0 Hz <, HF) and low (LF, < 1.0 Hz) frequency components. Vagal blockade by atropine abolished the high frequency component, and lowered the amplitude of the low frequency component. On the other hand, under conditions of sympathetic blockade by propranolol, the low frequency component was reduced. Combined vagal and sympathetic blockade abolished all heart rate fluctuations. We analyzed the low and high frequency components by integrating the spectrum for the respective band width. The rats administered capsaicin had a higher heart rate and sympathetic nervous system index (LF/HF) than the control group of rats. These results suggest that power spectral analysis is an effective and noninvasive method for detecting subtle changes in autonomic activity in response to the intake of foods or drugs.  相似文献   

4.
迷走神经和交感神经系统不同活动状态对心率变异性的影响   总被引:11,自引:0,他引:11  
Li L  Zhu JW  Cao YX  Li P 《生理学报》1998,50(5):519-524
实验在氯醛糖加氨基甲酸乙酯麻醉的新西兰兔上进行。记录血压、心率、心电图并对心电R-R间期(RRI)作功率谱密度(PSD)分析。以单调性电刺激和低频率的波动性电刺激分别刺激减压神经、疑核和右侧迷走神经外周端,观察到低频率的波动性刺激对增加PSD中低频成分(LF)的作用比单调性电刺激更大(P〈0.05)。注射新福林仅在头一个256个心动周期时间内引起总变异性(TV)、LF、PSD中高频成分(HF)。L  相似文献   

5.
目的观察摄食行为对小型猪心脏自主神经功能的影响。方法利用大动物无创遥测技术观察清醒活动状态下小型猪摄食前(BI)、摄食过程中(IP)、摄食后(AI)、AI 2 h和AI 4h的心电图(ECG)和自主活动,并用HRV功率谱分析其自主神经功能。结果与摄食前比较,小型猪摄食过程中心率(HR)、自主活动和标准化低频成分(LFnu)明显增加,RR间期(RRI)、总功率(TP)、极低频成分(VLF)、高频成分(HF)明显减少,LF/HF比值明显升高;且随着摄食后恢复时间的延长,小型猪HR、自主活动、LFnu均有所降低,而RRI、TP、VLF、HF均有所升高,LF/HF比值逐渐降低,并在摄食后2 h、4 h时变化显著;相关分析显示摄食行为与TP、VLF、HF、LF和LF/HF密切相关,多元线性逐步回归分析亦显示摄食行为与VLF、LF/HF和TP密切相关,且VLF起主要作用。结论小型猪摄食行为不仅影响心脏活动;而且能引起小型猪心脏自主神经控制能力发生改变,其中VLF在摄食行为过程中占有重要作用。  相似文献   

6.
We assessed the sympatho-vagal activities of the heart after administration of capsaicin by measuring the power spectral analysis in rats. There were major two frequency components of heart rate variability, which we defined as high (1.0 Hz<, HF) and low (LF, <1.0 Hz) frequency components. Vagal blockade by atropine abolished the high frequency component, and lowered the amplitude of the low frequency component. On the other hand, under conditions of sympathetic blockade by propranolol, the low frequency component was reduced. Combined vagal and sympathetic blockade abolished all heart rate fluctuations. We analyzed the low and high frequency components by integrating the spectrum for the respective band width. The rats administered capsaicin had a higher heart rate and sympathetic nervous system index (LF/HF) than the control group of rats. These results suggest that power spectral analysis is an effective and noninvasive method for detecting subtle changes in autonomic activity in response to the intake of foods or drugs.  相似文献   

7.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

8.
Zatebradine is a bradycardic agent with a selective effect on the pacemaker current in the sinus node. The effect of such drugs on heart rate variability is not known. Thirty-six patients without structural heart disease were randomly assigned to receive 10 mg of zatebradine i.v. (n = 24) or isotonic saline (n = 12). Heart rate variability (HRV) was recorded as power in the very low frequency (VLF, 0.003-0.040 Hz), low frequency (LF, 0.040-0.150 Hz), and high frequency (HF, 0.150-0.400 Hz) spectral bands as well as total power (TP, 0.003-0.400 Hz) during 5-min ECG acquisitions at baseline, 30, and 60 min following the start of the infusion. No change in heart rate variability was detected in the control group. Zatebradine significantly reduced heart rate variability at 60 min in all frequency bands: VLF (-12+/-4%, p<0.001), LF (-19+/-4%, p<0.001), and HF (-26+/-5%, p<0.001). The reduction in HRV following zatebradine is due to depression of sinus node response to all external stimuli and underscores the need for documentation of normal sinus node function in HRV research.  相似文献   

9.
Physiological changes accompanying syncopes of neural origin (SNO) in patients with psychovegetative syndrome are still insufficiently studied. The data concerning the role of the autonomic nervous system are discrepant. Heart rate variability was analyzed in 68 patients with SNO in a supine position and during the active 20-min orthostatic test taking into account the heart rate components of very low frequency (VLF, an index of cerebral sympathetic activity) and high frequency (HF, a marker of vagal modulation). Steady growth of the VLF and progressive decrease in the LF within 15-20 min of the orthostasis were observed in all the patients (n = 33), who fainted after this period. The predominance of the VLF in the heart rate power spectra was correlated with a high level of anxiety. It is suggested that this fact indicates the stable cerebral sympathetic activation resulting in a baroreceptor dysfunction, i.e., a failure of vasomotor regulation in patients with SNO.  相似文献   

10.
Spectral analysis of heart rate variability (HRV) during overnight polygraphic recording was performed in 11 healthy subjects. The total spectrum power, power of the VLF, LF and HF spectral bands and the mean R-R were evaluated. Compared to Stage 2 and Stage 4 non-REM sleep, the total spectrum power was significantly higher in REM sleep and its value gradually increased in the course of each REM cycle. The value of the VLF component (reflects slow regulatory mechanisms, e.g. the renin-angiotensin system, thermoregulation) was significantly higher in REM sleep than in Stage 2 and Stage 4 of non-REM sleep. The LF spectral component (linked to the sympathetic modulation) was significantly higher in REM sleep than in Stage 2 and Stage 4 non-REM sleep. On the contrary, a power of the HF spectral band (related to parasympathetic activity) was significantly higher in Stage 2 and Stage 4 non-REM than in REM sleep. The LF/HF ratio, which reflects the sympathovagal balance, had its maximal value during REM sleep and a minimal value in synchronous sleep. The LF/HF ratio significantly increased during 5-min segments of Stage 2 non-REM sleep immediately preceding REM sleep compared to 5-min segments of Stage 2 non-REM sleep preceding the slow-wave sleep. This expresses the sympathovagal shift to sympathetic predominance occurring before the onset of REM sleep. A significant lengthening of the R-R interval during subsequent cycles of Stage 2 non-REM sleep was documented, which is probably related to the shift of sympathovagal balance to a prevailing parasympathetic influence in the course of sleep. This finding corresponds to a trend of a gradual decrease of the LF/HF ratio in subsequent cycles of Stage 2 non-REM sleep.  相似文献   

11.
目的观察体位改变对Beagle犬心脏自主神经控制的影响。方法利用大动物无创生理遥测技术,监测清醒活动状态下雌性Beagle犬在静态姿势(lying、standing、sitting、hanging)和运动(walking)姿势下的心电图(ECG),并用HRV功率谱分析其自主神经功能。结果在静态姿势下,Beagle犬RR间期(RRI)、RR间期的标准差SDNN(SDNN)、相邻RR间期差值平方和的均方根RMSSD(RMSSD)、相邻R-R间期差值〉50 ms的窦性个数占心搏总数的百分比pNNabs(50)(pNNabs(50))、TP总功率(TP)、VLF极低频功率(VLF)、标准化高频功率(HFnorm)均明显高于运动状态(P〈0.05,P〈0.01),而心率(HR)、标准化低频功率(LFnorm)和低频功率/高频功率(LF/HF)平衡指数则明显低于运动状态(P〈0.05,P〈0.01)。结论不同体位姿势在静息状态下以迷走神经活动兴奋为主,相反,在运动状态下以交感神经活动兴奋为主;体位姿势改变能引起心率的变化,必然影响心脏自主神经控制能力,其主要取决于迷走神经活动强弱有关,且导致LF/HF均衡性的破坏。  相似文献   

12.
实验在氯醛糖加氨基甲酸乙酯麻醉的新西兰兔上进行。记录血压,心率,心电图和心率变异性频谱分析。电刺激减压神经,疑核和右侧迷走神经外周端,均引起心率和血压下降,总变异性,低频成分,高频成分,LF/HF比值和极代频成分增大。静脉注射阿托品可使上述反应显著减小,而静脉注射心得安仅可阻断DN和NA所致LF的增大。  相似文献   

13.
An orthostatic test with frequency-controlled breathing (with a respiration period of 10 s) or spontaneous breathing was used to analyze frequency estimates of the heart rate variability (HRV) in the low-frequency (LF) and high-frequency (HF) ranges in young men and women. It was demonstrated that the spectral components of HRV bear no signs of sex differentiation, suggesting a uniform structural organization of the system of autonomic nervous control of the heart (SANCH) in humans. The LF component of the HRV spectrum is a marker of the functional state of the SANCH; it should be studied under conditions of controlled breathing at a frequency of 0.1 Hz. The HF and LF components of the HRV characterize the state of the SANCH at a given moment and do not reflect directly its adaptation reserve. The HF component of the HRV is interesting as a parameter that may be used for estimating the changes in the adaptation reserve of heart autonomic control. It is preferable to analyze this component in the absence of external disturbances in the LF range of the spectrum.  相似文献   

14.
Heart rate variability (HRV) reflects the healthiness of autonomic nervous system, which is associated with exercise capacity. We therefore investigated whether HRV could predict the exercise capacity in the adults with cardiac syndrome X (CSX). A total of 238 subjects (57±12 years, 67.8% men), who were diagnosed as CSX by the positive exercise stress test and nearly normal coronary angiogram were enrolled. Power spectrum from the 24-hour recording of heart rate was analyzed in frequency domain using total power (TP) and spectral components of the very low frequency (VLF), low frequency (LF) and high frequency (HF) ranges. Among the study population, 129 subjects with impaired exercise capacity during the treadmill test had significantly lower HRV indices than those with preserved exercise capacity (≥90% of the age predicted maximal heart rate). After accounting for age, sex, and baseline SBP and heart rate, VLF (odds ratio per 1SD and 95% CI: 2.02, 1.19–3.42), LF (1.67, 1.10–2.55), and TP (1.82, 1.17–2.83) remained significantly associated with preserved exercise capacity. In addition, increased HRV indices were also associated with increased exercise duration, rate-pressure product, and heart rate recovery, independent of age, body mass index, and baseline SBP and heart rate. In subgroup analysis, HRV indices demonstrated similar predictive values related to exercise capacity across various subpopulations, especially in the young. In patients with CSX, HRV was independently associated with exercise capacity, especially in young subjects. The healthiness of autonomic nervous system may have a role in modulating the exercise capacity in patients with CSX.  相似文献   

15.
迷走神经在心率变异性中的作用   总被引:6,自引:2,他引:6  
He SY  Hu SJ  Wang XH  Han S 《生理学报》2002,54(2):129-132
采用功率谱和近似熵 (approximateentropy ,ApEn)的方法 ,分析清醒家兔在双侧迷走神经保留 ,右、左侧迷走神经切断以及双侧迷走神经同时切断时心搏间期 (RRI)的变化。结果显示 :双侧迷走神经保留时功率谱中高频功率 (HF)、低频功率 (LF)及ApEn值均高于双侧及单侧迷走神经切断时 (P <0 0 5 ) ,LF/HF比值最小 ;切断单侧迷走神经 ,ApEn变小 ,LF/HF比值在右侧迷走神经切断时增大 ,而切断左侧迷走时LF/HF比值无明显变化 ;双侧迷走神经切断后LF/HF比值最大 ,ApEn最低。结果表明 :心率变异主要由迷走神经调节 ,右侧迷走神经起主要作用 ;传统心率变异性测量方法与非线性方法所得结果一致  相似文献   

16.
BACKGROUND AND PURPOSES: The purpose of the study was to document diurnal variation of autonomic nervous functions by use of power spectral analysis of heart rate (HR) variability. METHODS: To clarify characteristics of power spectral analysis of HR variability, electrocardiogram (ECG), blood pressure (BP), and respiratory (Resp) waveform simultaneously were recorded. RESULTS: Two major spectral components were examined at low (LF)- and high (HF)-frequency bands for HR variability. Coherence between HR and Resp variabilities and HR and BP variabilities was maximal at approximately 0.14 and 0.03 Hz, respectively. On the basis of these data, two frequency bands of interest--LF (0.01 to 0.07 Hz) and HF (0.07 to 1.0 Hz)--were defined. Autonomic blockade studies indicated that the parasympathetic system mediated the HF and LF components, whereas the sympathetic system mediated only the LF component; HR had a diurnal pattern. The LF and HF bands in the dark phase tended to be higher than those in the light phase. The LF-to-HF ratio had a diurnal pattern similar to that of the HR. CONCLUSION: Parasympathetic nervous activity in miniature swine may be predominant in the dark phase. The characteristics of power spectra and diurnal variations of autonomic nervous functions are almost the same as those of humans. Therefore, miniature swine may be a useful animal model for future biobehavioral and pharmacotoxicologic studies.  相似文献   

17.
The aim of this study was to examine the effects of psychological stress on autonomic control of the heart in rats. For this purpose, we evoked anxiety-like or fear-like states in rats by means of classical conditioning and examined changes in autonomic nervous activity using an implanted telemetry system and power spectral analysis of heart rate variability. Anxiety-like states resulted in a significant increase in heart rate (HR), low frequency (LF) power, and LF/HF ratio, with no change in high frequency (HF) power. Fear-like states resulted in a significant increase in HR and a significant decrease in HF power with no significant change in both LF power and LF/HF ratio, although LF/HF ratio increased slightly. These results suggest that autonomic balance becomes predominant in sympathetic nervous activity in both anxiety-like and fear-like states. These changes in rats correspond to changes which are relevant to cardiovascular diseases in humans under many kinds of psychological stress. Therefore, the experimental design of this study is a useful experimental model for investigating the effects of psychological stress on autonomic control of the heart in humans.  相似文献   

18.
The aim of this study was to examine the changes in autonomic control of the heart associated with classical appetitive conditioning in rats. We trained rats to learn that a movement into a test chamber was followed by delivery of reward (contextual conditioning) and performed power spectral analysis of heart rate variability from electrocardiograms recorded using the telemetry system. We investigated the sympathovagal balance of autonomic regulation of the heart in response to not only the conditioned stimulus (the movement into the test chamber), but also the unconditioned stimulus (reward), and compared the results of these two kinds of emotional states; it might be considered that "the reward-expecting state" is evoked by the conditioned stimulus and "the reward-receiving state" is evoked by the unconditioned stimulus in rats. The reward-expecting state resulted in a significant increase in both low frequency (LF) power and high frequency (HF) power with no change in heart rate (HR) and LF/HF ratio, indicating that both sympathetic and parasympathetic activity increased with no change in sympathovagal balance. The reward-receiving state resulted in a significant increase in HR and a significant decrease in LF power, HF power, and LF/HF ratio, indicating that both sympathetic and parasympathetic activity decreased with predominance in the parasympathetic activity. These results suggest that the method performed in our present study might be useful for distinguishing between two different emotional states evoked by classical appetitive conditioning in rats.  相似文献   

19.
We evaluated the relationship between the toxicity induced by the organophosphate mevinphos (Mev) and inducible nitric oxide synthase (iNOS) in the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic neurogenic vasomotor tone. Adult Sprague-Dawley rats that were anesthetized and maintained with propofol were used. Laser scanning confocal microscopic analysis revealed colocalization of the M2 subtype of muscarinic receptors (M(2)R) and iNOS immunoreactivity in RVLM neurons. Comicroinjection bilaterally of Mev (10 nmol) and artificial cerebrospinal fluid (aCSF) into the RVLM elicited a progressive decline in systemic arterial pressure (SAP) and heart rate. This was accompanied during phase 1 Mev intoxication by an increase in the power density of the very high-frequency (VHF; 5-9 Hz), high-frequency (HF; 0.8-2.4 Hz), low-frequency (LF; 0.25- 0.8 Hz) and very low-frequency (VLF; 0-0.25 Hz) components of SAP signals. Phase 2 exhibited a reversal of the VHF and VLF power to control levels and a further reduction in the power density of both HF and LF components to below baseline. Hypotension and bradycardia promoted by Mev were significantly blunted on coadministration into the RVLM of the selective iNOS inhibitors S-methylisothiourea (250 pmol) or aminoguanidine (250 pmol). Not only was the augmented power density of HF and LF components during phase 1 Mev intoxication further enhanced, the reduced power of these two spectral components during phase 2 was appreciably antagonized. On the other hand, the temporal changes in VHF and VLF power were essentially the same as with coadministration of Mev and aCSF. We conclude that, as a cholinesterase inhibitor, Mev may induce toxicity via nitric oxide produced by iNOS on activation of the M(2)R by the accumulated acetylcholine in the RVLM.  相似文献   

20.
Autism spectrum disorder (ASD) is a developmental disorder marked by difficulty in social interactions and communication. ASD also often present symptoms of autonomic nervous system (ANS) functioning abnormalities. In individuals with autism the sympathetic branch of the ANS presents an over-activation on a background of the parasympathetic activity deficits, creating an autonomic imbalance, evidenced by a faster heart rate with little variation and increased tonic electrodermal activity. The objective of this study was to explore the effect of 12 sessions of 0.5 Hz repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on autonomic activity in children with ASD. Electrocardiogram and skin conductance level (SCL) were recorded and analyzed during each session of rTMS. The measures of interest were time domain (i.e., R–R intervals, standard deviation of cardiac intervals, NN50-cardio-intervals >50 ms different from preceding interval) and frequency domain heart rate variability (HRV) indices [i.e., power of high frequency (HF) and low frequency (LF) components of HRV spectrum, LF/HF ratio]. Based on our prior pilot studies it was proposed that the course of 12 weekly inhibitory low-frequency rTMS bilaterally applied to the DLPFC will improve autonomic balance probably through improved frontal inhibition of the ANS activity, and will be manifested in an increased length of cardiointervals and their variability, and in higher frequency-domain HRV in a form of increased HF power, decreased LF power, resulting in decreased LF/HF ratio, and in decreased SCL. Our post-12 TMS results showed significant increases in cardiac intervals variability measures and decrease of tonic SCL indicative of increased cardiac vagal control and reduced sympathetic arousal. Behavioral evaluations showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings that correlated with several autonomic variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号