首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport.  相似文献   

7.
Structural proteins of simian virus 40 (SV40), Vp2 and Vp3 (Vp2/3) and Vp1, carry individual nuclear targeting signals, Vp3(198-206) (Vp2(316-324) and Vp1(1-8), respectively, which are encoded in different reading frames of an overlapping region of the genome. How signals coordinate nuclear targeting during virion morphogenesis was examined by using SV40 variants in which there is only one structural gene for Vp1 or Vp2/3, nuclear targeting-defective mutants thereof, Vp2/3(202T) and Vp1 delta N5, or nonoverlapping SV40 variants in which the genes for Vp1 and Vp2/3 are separated, and mutant derivatives of the gene carrying either one or both mutations. Nuclear targeting was assessed immunocytochemically following nuclear microinjection of the variant DNAs. When Vp2/3 and Vp1 mutants with defects in the nuclear targeting signals were expressed individually, the mutant proteins localized mostly to the cytoplasm. However, when mutant Vp2/3(202T) was coexpressed in the same cell along with wild-type Vp1, the mutant protein was effectively targeted to the nucleus. Likewise, the Vp1 delta N5 mutant protein was transported into the nucleus when wild-type Vp2/3 was expressed in the same cells. These results suggest that while Vp1 and Vp2/3 have independent nuclear targeting signals, additional signals, such as those defining protein-protein interactions, play a concerted role in nuclear localization along with the nuclear targeting signals of the individual proteins.  相似文献   

8.
The herpes simplex virus mutants KOS1.1 ts756 and HFEM tsLB2 express temperature-sensitive ICP4 proteins that are not localized properly to the cell nucleus at the nonpermissive temperature. In these infected cells at the nonpermissive temperature, nuclear localization of at least two other viral proteins, ICP0 and ICP8, is impaired. Replacement of the mutated sequences in the ICP4 gene of tsLB2 restored proper nuclear localization of all of the proteins. The ICP0 and ICP8 proteins expressed in cells transfected with their individual genes were localized to the cell nucleus. Therefore, in infected cells, the mutant ICP4 gene product appears to be the primary defect which leads to the block in nuclear localization of the other proteins. One viral protein, ICP27, was not inhibited for nuclear localization in these cells. These data indicate that there are at least two pathways for nuclear localization of HSV proteins, one of which is inhibited by the mutant ICP4 protein. The mutant ICP4 protein may define a probe for one of the pathways of nuclear localization of proteins.  相似文献   

9.
10.
Functional analysis of HNPCC-related missense mutations in MSH2   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.  相似文献   

11.
Ribosomal proteins must be imported into the nucleus after being synthesized in the cytoplasm. Since the rpS2 amino acid sequence does not contain a typical nuclear localization signal, we used deletion mutant analysis and rpS2-beta-galactosidase chimeric proteins to identify the nuclear targeting domains in rpS2. Nuclear rpS2 is strictly localized in the nucleoplasm and is not targeted to the nucleoli. Subcellular localization analysis of deletion mutants of rpS2-beta-galactosidase chimeras identified a central domain comprising 72 amino acids which is necessary and sufficient to target the chimeric beta-galactosidase to the nucleus. The nuclear targeting domain shares no significant similarity to already characterized nuclear localization signals in ribosomal proteins or other nuclear proteins. Although a Nup153 fragment containing the importinbeta binding site fused to VP22 blocks nuclear import of rpS2-beta-galactosidase fusion proteins, nuclear uptake of rpS2 could be mediated by several import receptors since it binds to importinalpha/beta and transportin.  相似文献   

12.
13.
14.
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.  相似文献   

15.
16.
17.
《The Journal of cell biology》1989,109(6):2665-2675
When nuclear localization sequences (termed NLS) are placed at the N terminus of cytochrome c1, a mitochondrial inner membrane protein, the resulting hybrid proteins do not assemble into mitochondria when synthesized in the yeast Saccharomyces cerevisiae. Cells lacking mitochondrial cytochrome c1, but expressing the hybrid NLS-cytochrome c1 proteins, are unable to grow on glycerol since the hybrid proteins are associated primarily with the nucleus. A similar hybrid protein with a mutant NLS is transported to and assembled into the mitochondria. To identify proteins that might be involved in recognition of nuclear localization signals, we isolated conditional- lethal mutants (npl, for nuclear protein localization) that missorted NLS-cytochrome c1 to the mitochondria, allowing growth on glycerol. The gene corresponding to one complementation group (NPL1) encodes a protein with homology to DnaJ, an Escherichia coli heat shock protein. npl1-1 is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum. Rothblatt, J. A., R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman. 1989. J. Cell Biol. 109:2641-2652. The npl1 mutants reported here also weakly affect translocation of preprocarboxypeptidaseY across the ER membrane. A normally nuclear hybrid protein containing a NLS fused to invertase and a nucleolar protein are not localized to the nucleus in npl1/sec63 cells at the nonpermissive temperature. Thus, NPL1/SEC63 may act at a very early common step in localization of proteins to the nucleus and the ER. Alternatively, by affecting ER and nuclear envelope assembly, npl1 may indirectly alter assembly of proteins into the nucleus.  相似文献   

18.
Arrestins bind active phosphorylated G protein-coupled receptors, terminating G protein activation. Receptor-bound non-visual arrestins interact with numerous partners, redirecting signaling to alternative pathways. Arrestins also have nuclear localization and nuclear exclusion signals and shuttle between the nucleus and the cytoplasm. Constitutively shuttling proteins often redistribute their interaction partners between the two compartments. Here we took advantage of the nucleoplasmic shuttling of free arrestins and used a "nuclear exclusion assay" to study their interactions with two proteins involved in "life-and-death" decisions in the cell, the kinase JNK3 and the ubiquitin ligase Mdm2. In human embryonic kidney 293 cells green fluorescent protein (GFP)-JNK3 and GFP-Mdm2 predominantly localize in the nucleus, whereas visual arrestin, arrestin2(Q394L) mutant equipped with the nuclear exclusion signal, and arrestin3 localize exclusively to the cytoplasm. Coexpression of arrestins moves both GFP-JNK3 and GFP-Mdm2 to the cytoplasm. Arrestin mutants "frozen" in the basal conformation are the most efficacious. Thus, arrestins in their basal state interact with JNK3 and Mdm2, suggesting that arrestins are likely "preloaded" with their interaction partners when they bind the receptor. Robust interaction of free arrestins with JNK3 and Mdm2 and their ability to regulate subcellular localization of these proteins may play an important role in the survival of photoreceptors and other neurons, as well as in retinal and neuronal degeneration.  相似文献   

19.
20.
The evidence that nuclear proteins can be degraded by cytosolic proteasomes has received considerable experimental support. However, the presence of proteasome subunits in the nucleus also suggests that protein degradation could occur within this organelle. We determined that Sts1 can target proteasomes to the nucleus and facilitate the degradation of a nuclear protein. Specific sts1 mutants showed reduced nuclear proteasomes at the nonpermissive temperature. In contrast, high expression of Sts1 increased the levels of nuclear proteasomes. Sts1 targets proteasomes to the nucleus by interacting with Srp1, a nuclear import factor that binds nuclear localization signals. Deletion of the NLS in Sts1 prevented its interaction with Srp1 and caused proteasome mislocalization. In agreement with this observation, a mutation in Srp1 that weakened its interaction with Sts1 also reduced nuclear targeting of proteasomes. We reported that Sts1 could suppress growth and proteolytic defects of rad23Δ rpn10Δ. We show here that Sts1 suppresses a previously undetected proteasome localization defect in this mutant. Taken together, these findings explain the suppression of rad23Δ rpn10Δ by Sts1 and suggest that the degradation of nuclear substrates requires efficient proteasome localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号