首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Nicotiana contains species and varieties that respond differently to photoperiod for flowering time control as day-neutral, short-day and long-day plants. In classical photoperiodism studies, these varieties have been widely used to analyse the physiological nature for floral induction by day length. Since key regulators for flowering time control by day length have been identified in Arabidopsis thaliana by molecular genetic studies, it was intriguing to analyse how closely related plants in the Nicotiana genus with opposite photoperiodic requirements respond to certain flowering time regulators. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are two MADS box genes that are involved in the regulation of flowering time in Arabidopsis. SOC1 is a central flowering time pathway integrator, whereas the exact role of FUL for floral induction has not been established yet. The putative Nicotiana orthologs of SOC1 and FUL, NtSOC1 and NtFUL, were studied in day-neutral tobacco Nicotiana tabacum cv Hicks, in short-day tobacco N. tabacum cv Hicks Maryland Mammoth (MM) and long-day N. sylvestris plants. Both genes were similarly expressed under short- and long-day conditions in day-neutral and short-day tobaccos, but showed a different expression pattern in N. sylvestris. Overexpression of NtSOC1 and NtFUL caused flowering either in strict short-day (NtSOC1) or long-day (NtFUL) Nicotiana varieties under non-inductive photoperiods, indicating that these genes might be limiting for floral induction under non-inductive conditions in different Nicotiana varieties.  相似文献   

2.
In this study, oat phytochrome A (phyA), Arabidopsis phytochrome B (phyB) or Arabidopsis phytochrome C (phyC) were expressed in both day-neutral and photo-period-sensitive (short-day) tobacco (Nicotiana tabacum cv. Hicks). Introgression of the Maryland Mammoth (MM) gene into cv Hicks was used to confer short-day photo-periodic sensitivity. Expression of oat phyA led to characteristic hypersensitivity of hypocotyls to red light (R) and far-red light (FR) and an overall dwarfing of the mature plant. Expression of Arabidopsis phyB enhanced the sensitivity of hypocotyls to R and caused even more marked dwarfing of the mature plant. In contrast, the expression of Arabidopsis phyC had no detectable consequences for the photocontrol of hypocotyl elongation. However, phyC expression did lead to a R-dependent increase in cotyledon expansion in de-etiolating seedlings and to a significant increase in leaf area in mature plants. This provides the first experimental evidence that phyC is biologically active. The flowering time of cv Hicks plants grown under 8 h photoperiods was virtually unaffected by a 30 min white light (W) night break given 8 h into the dark period. In contrast, cv Hicks MM plants responded to a night break with a delay in flowering. Expression of phyA or phyB led to a night break-dependent delay in flowering in cv Hicks plants. For cv Hicks MM plants, the expression of any of phyA, phyB or phyC caused a marked enhancement of the flower-delaying effect of a night break. These observations indicate that transgenic phyA, phyB or phyC can interact with the endogenous mechanisms controlling flowering time in tobacco.  相似文献   

3.
4.
Floral determination in the terminal bud of the short-day plant Nicotiana tabacum cv. Maryland Mammoth has been investigated. Plants grown continuously in short days flowered after producing 31.4±1.6 (SD) nodes while plants grown continuously in long days did not flower and produced 172.5±9.5 nodes after one year. At various ages, expressed as number of leaves that were at least 1.0 cm in length above the most basal 10-cm leaf, one of three treatments was performed on plants grown from seed in short days: 1) whole plants were shifted from short days to long days, 2) the terminal bud was removed and then rooted and grown in long days, and 3) the terminal bud was removed and then rooted and grown in short days. Whole plants flowered only when shifted from short days to long days at age 15 or later. Only rooted terminal buds from plants at age 15 or older produced plants that flowered when grown in long days. Only terminal buds from plants at age 15 or older that were rooted and grown in short days produced the same number of nodes as they would have produced in their original locations while buds from younger plants produced more nodes than they would have in their original locations. Thus, determination for floral development in the terminal bud, as assayed by rooting, is simultaneous with the commitment to flowering as assayed by shifting whole plants to non-inductive conditions.Abbreviations LD long day(s) - SD short day(s) - DN dayneutral  相似文献   

5.
6.
Expression of the Cry2Aa2 protein was targeted specifically to the green tissues of transgenic tobacco Nicotiana tabacum cv. Xanthi plants. This deployment was achieved by using the promoter region of the gene encoding the Solanum tuberosum leaf and stem specific (ST-LS1) protein. The accumulated levels of toxin in the leaves were found to be effective in achieving 100 mortality of Heliothis virescens larvae. The levels of Cry2Aa2 expression in the leaves of these transgenic plants were up to 0.21 of the total soluble proteins. Bioassays with R1 transgenic plants indicated the inheritance of cry2Aa2 in the progeny plants. Tissue-specific expression of the Bt toxin in transgenic plants may help in controlling the potential occurrence of insect resistance by limiting the amount of toxin to only predated tissues. The results reported here validate the use of the ST-LS1 gene promoter for a targeted expression of Bt toxins in green tissues of plants.  相似文献   

7.
Expression of bacterial gdhA (glutamate dehydrogenase; GDH; E.C. 1.4.1.1) genes in transgenic plants fundamentally alters plant growth, herbicide tolerance and metabolite profiles. The aim was to correlate gdhA expression with water potential during deficit using transgenic Nicotiana tabacum cv. ‘SR1’ (tobacco). Expression of GDH activity from the transgene was significantly correlated with high water potentials during deficit, both after 5 days of water deprivation (R = 0.91) and after 6 h after re-watering on day 6 (R = 0.72). GDH expression may provide a tool to alter the response of plants to periodic water deficit.  相似文献   

8.
9.
10.
11.
Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast‐targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS‐transgenic lines (control) or wild‐type plants. The gibberellin levels in HaGGPS‐transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS‐transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS‐expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.  相似文献   

12.
The coding region of the 2S albumin gene of Brazil nut (Bertholletia excelsa H.B.K.) was completely synthesized, placed under control of the cauliflower mosaic virus (CaMV) 35S promoter and inserted into the binary vector plasmid pGSGLUC1, thus giving rise to pGSGLUC1-2S. This was used for transformation of tobacco (Nicotiana tabacum L. cv. Petit Havanna) and of the grain legume Vicia narbonensis L., mediated by the supervirulent Agrobacterium tumefaciens strain EHA 101. Putative transformants were selected by screening for neomycin phosphotransferase (NPT II) and -glucuronidase (GUS) activities. Transgenic plants were grown until flowering and fruiting occurred. The presence of the foreign gene was confirmed by Southern analysis. GUS activity was found in all organs of the regenerated transgenic tobacco and legume plants, including the seeds. In the legume, the highest expression levels of the CaMV 35S promoter-controlled 2S albumin gene were observed in leaves and roots. 2S albumin was localized in the vacuoles of leaf mesophyll cells of transgenic tobacco. The Brazil nut protein was present in the 2S fraction after gel filtration chromatography of the legume seed proteins and could be clearly identified by immunoblotting. Analysis of seeds from the R2 progenies of the legume and of transgenic tobacco plants revealed Mendelian inheritance of the foreign gene. Agrobacterium rhizogenes strain RifR 15834 harbouring the binary vector pGSGLUCl2S was also used to transform Pisum sativum L. and Vicia faba L. Hairy roots expressed the 2S albumin-specific gene. Several shoots were raised but they never completely rooted and no fertile plants were obtained from these transformants.  相似文献   

13.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Synková  H.  Pechová  R.  Valcke  R. 《Photosynthetica》2003,41(1):117-126
Changes in chloroplast ultrastructure and total content of endogenous cytokinins (CK) were studied during different phases of plant development in transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1). Permanent overproduction of CK was found in both rooted (SE) and grafted (G) Pssu-ipt plants in all phases of plant development with the peak in vegetative and flowering phase in the latter ones. No such a correlation was observed in SE on the contrary to control non-transgenic plants (SR1) and grafts (SRG), which showed also CK increase at juvenile and flowering phases. No significant differences in parameters of chloroplast ultrastructure, such as length of chloroplast, starch content, granum width, and number of thylakoids per granum, were proved between chloroplasts from young mature leaves of control and transgenic tobacco during plant ontogeny. Nevertheless, several anomalies in the ultrastructure of cell organelles were found in Pssu-ipt tobacco. Amoeboid shape of chloroplasts was often observed in connection with tubular clusters resembling peripheral reticulum. The distinct crystalline structures located in chloroplasts might be formed by LHC protein aggregates. Smaller crystals of unknown composition were found also in mitochondria. Numerous crystalline cores were present in peroxisomes. The alterations might be the result of imbalance of phytohormone content, degradation effect of CK overproduction, or the example of acclimation to permanent stress.  相似文献   

15.
The auxin-inducible gene ARGOS from Arabidopsis thaliana is expressed in growing tissues and controls the plant organ size by regulating cell proliferation and meristematic competence. The promoter of the dahlia (Dahlia pinnata Cav.) mosaic virus (DMV) resembles the well-known cauliflower mosaic virus 35S promoter but shows a higher activity in transgenic tobacco plants (Nicotiana tabacum L.). We obtained transgenic tobacco plants expressing the Arabidopsis ARGOS gene under the control of the DMV promoter. Several of the T0 generation plants exhibited an accelerated transition to flowering, a slight increase in flower size, and a significant increase in the leaf size. The T1 transgenic plants were characterized by faster growth, the increased leaf size, and somewhat enlarged flowers as compared with control plants. These phenotypic traits, as well as stability and inheritance of the transgene were demonstrated also in T2 transgenic plants.  相似文献   

16.
Cytokinins play important roles in regulating plant growth and development. A new genetic construct for regulating cytokinin content in plant cells was cloned and tested. The gene coding for isopentenyl transferase (ipt) was placed under the control of a 0.821 kb fragment of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene promoter from Lycopersicon esculentum (LEACO1) and introduced into Nicotiana tabacum (cv. Havana). Some LEACO10.821 kb-ipt transgenic plant lines displayed normal shoot morphology but with a dramatic increase in the number of flower buds compared to nontransgenic plants. Other transgenic lines produced excessive lateral branch development but no change in flower bud number. Isolated leaves of transgenic tobacco plants showed a significantly prolonged retention of chlorophyll under dark incubation (25°C for 20 days). Leaves of nontransformed plants senesced gradually under the same conditions. Experiments with LEACO10.821 kb-gus transgenic tobacco plants suggested auxin and ethylene involvement in induction of LEACO10.821 kb promoter activity. Multiple copies of nucleotide base sequences associated with either ethylene or auxin response elements were identified in the LEACO10.821 kb promoter fragment. The LEACO10.821 kb-ipt fusion gene appears to have potential utility for improving certain ornamental and agricultural crop species by increasing flower bud initiation and altering branching habit.  相似文献   

17.
Here, the tobacco (Nicotiana tabacum) day-neutral (DN) cv. Samsun transformed with the Schizosaccharomyces pombe mitotic activator gene Spcdc25 was used to study the onset of flowering. Wild type (WT) and cdc25 plants were grown from seeds in vitro until they were 20 cm high. Apical and basal nodes were then subcultured repeatedly and the regenerated plants were used to document time to flowering and the number of leaves formed before flowering. Three sucrose treatments (3, 5 or 7% (weight/volume)) were used and measurements of leaf endogenous soluble carbohydrates were performed. In the 3% treatment, cdc25 plants flowered but WT plants did not. The higher sucrose treatments enabled WT flowering; two-thirds of the plants flowered at 5%, while all plants flowered at 7% sucrose. However, in all treatments, cdc25 plants exhibited significantly earlier flowering and fewer leaves compared with wild type. Remarkably, a typical acropetal flowering gradient in WT plants did not occur in cdc25 plants. In cdc25 leaves, there were significantly higher amounts of endogenous sugars with a higher proportion of sucrose compared with WT. Our data demonstrate that Spcdc25 expression and sucrose act synergistically to induce precocious flowering.  相似文献   

18.
Tobacco plants (Nicotiana tabacum cv Samsun NN) have been transformed with the gene encoding the type-2 ribosome-inactivating protein (RIP) SNA-I′ from elderberry (Sambucus nigra) under the control of the Cauliflower Mosaic Virus 35S promoter. Previous research confirmed that these plants synthesize, correctly process and assemble a fully active RIP. Variability in protein expression was observed within the transgenic lines. The effects of the type-2 RIP SNA-I′ delivered through a leaf feeding assay were evaluated in the laboratory on two economically important pest insects belonging to the orders of Hemiptera, the tobacco aphid (Myzus nicotianae) and Lepidoptera, the beet armyworm (Spodoptera exigua). In the experiment with aphids, significant effects were observed on the life parameters, such as survival, intrinsic rate of increase, net reproductive rate, mean generation time and mean daily offspring, whereas with caterpillars significant reduction in fresh weight as well as retardation in development were observed. In addition, significant increases in mortality were noted for insects fed on the transgenic lines as compared to wild type plants. This information provides further support for RIPs having a role in plant resistance to insect pest species.  相似文献   

19.
Regeneration of flower buds in thin tissue layers from pedicels of photoinduced short-day (SD) tobacco, Nicotiana tabacum L. cv. Maryland Mammoth, is described. Up to seven flower buds per explant were obtained in a medium containing Murashige and Skoog's macro- and microclements, 100 mg/l myoinositol, 0.1 mg/l thiamine-HCl, 6% glucose, 5 M N6-benzylaminopurine, and 0.5 M -naphthaleneacetic acid. Usually some vegetative buds were also formed in the pedicel thin tissue layers. Thin tissue layers from other positions in the induced SD tobacco regenerated vegetative buds only. A comparative study with a day-neutral (DN) tobacco, Samsun, showed that the capacity to form de-novo flower buds was more localized and less strongly determined in photoperiodic than in the DN tobacco. The differences between the photoperiodic and DN tobaccos in flower-bud regeneration capacity are thus quantitative and not qualitative. The basis for this quantitative difference is not known, but may depend on factors controlling production of floral stimulus (florigen) and competency of cells to respond to florigen, and-or stability of the determined state to form flower buds in vitro.Abbreviations BAP N6-benzylaminopurine - DN day-neutral - GA3 gibberellic acid - LD long-day - MM Maryland Mammoth - NAA -naphthaleneacetic acid - SD short-day  相似文献   

20.
Protoplasts from a nitrate reductase-deficient mutant of Nicotiana tabacum L. were fused with protoplasts from a stamen-less, cytoplasmically malesterile cultivar of tobacco containing the cytoplasm from N. suaveolens Lehm. Plants were regenerated from the fused protoplasts and characterized with respect to stamen development, chromosome number, and chloroplast composition. Of 29 regenerated plants, stamen production was restored in 26 plants and pollen production in 22. One plant was male sterile and two plants have never flowered. Analysis of the electrophoretic mobility of ribulose-1,5-bisphosphate carboxylase (RuBPcase) showed that 19 of the plants contained RuBPcase of the N. suaveolens type, six plants contained enzyme of the N. tabacum type, and four plants contained both types. Analysis of resistance to tentoxin in seedlings from 20 of the plants demonstrated that 14 had N. suaveolens-type chloroplasts, three had N. tabacum type, and three contained both types. Many of the plants which produced stamens and pollen still contained chloroplasts of the N. suaveolens type. Thus, the trait of cytoplasmic male sterility in tobacco is not an expression of the type of chloroplast genetic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号