首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 +/- 115 fmol/micrograms DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 +/- 17 fmol/microgram DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

2.
The low level of transglutaminase activity in virus-transformed human embryonic lung fibroblasts (WI-38 VA13A) increased markedly when cells were exposed to sodium butyrate. The effect of sodium butyrate was time- and concentration-dependent and fully reversible. Transformed cells exposed for 5 days to 1 mM sodium butyrate had fewer cells, showed an 8–10-fold higher transglutaminase activity, and stained more abundantly for transglutaminase and pericellular fibronectin than control cells when examined by indirect immunofluorescence. Non-transformed cells (WI-38) showed only a 2–4-fold increase in transglutaminase activity when treated in a similar manner. Studies with metabolic inhibitors revealed the increase in activity was the result of synthesis of new protein. Kinetic studies showed the affinity of putrescine for the enzyme was essentially unchanged but the number of active sites increased 9-fold following exposure to sodium butyrate. Enhanced transglutaminase activity returned to control levels within 7 days after subculture and sodium butyrate removal. These findings suggest that sodium butyrate offers a potential model system to understand better the role of transglutaminase in cells in culture; particularly growth control in transformed cells.  相似文献   

3.
When resting confluent monolayers of WI-38 fibroblasts are stimulated to proliferate by serum, DNA synthesis begins to increase between 15-18 h after stimulation. Chromatin-bound protein kinase activity increases in stimulated cells within 1 h after the nutritional change, concomitant with an increase in the template activity of nuclear chromatin. Addition of dibutyryl 3' : 5'-cyclic adenosine monophosphate (dibutyryl cyclic) AMP to the stimulating medium inhibits the entrance of cells into S phase, but only if dibutyryl cyclic AMP (5-10(-4) M) is added before the onset of DNA synthesis. The increases in chromatin template activity and in the chromatin-bound kinase activity are not inhibited by dibutyryl cyclic AMP in the early hours after stimulation, but are completely inhibited after the 5th hour from the nutritional change. This seems to indicate that in stimulated WI-38 cells, dibutyryl cyclic AMP exerts its inhibitory action somewhere between 5 and 12 h after stimulation. A number of protein kinase activities were extracted from chromatin with 0.3 M NaCl and partially resolved on a phosphocellulose column. Two distinct peaks of protein kinase activity appeared to be markedly increased in WI-38 cells 6 h after serum stimulation. Both peaks of increased activity were inhibited by dibutyryl cyclic AMP in vivo. Adenosine, sodium butyrate and adenosine 5'-monophosphate (AMP) do not inhibit the increase in DNA synthesis nor the increase in protein kinase activity. The results suggest that stimulation of cell proliferation in confluent monolayers of WI-38 cells causes an increase (or the new appearance) of certain chromatin-bound protein kinases, and that this increase is inhibited by cyclic AMP in vivo.  相似文献   

4.
Cellular transglutaminase activity was induced in simian virus-transformed human embryonic lung fibroblasts (WI-38 VA13A) by sodium butyrate. The level of enzyme activity approached a maximum by 6 days; 9–11-fold higher in the presence of sodium butyrate (1 mM) than in its absence. The observed increases in cellular transglutaminase activity could be entirely accounted for by equivalent increases in the levels of enzyme protein measured by inhibition enzyme-linked immunosorbent assay. Sodium butyrate also increased the rate of enzyme synthesis, but had no effect on the rate of cellular transglutaminase degradation. The increase in the rate of enzyme synthesis was matched by an increased level of translatable transglutaminase mRNA as measured in a cell-free translation system. Our results suggest that sodium butyrate regulates cellular transglutaminase at the pretranslational level.  相似文献   

5.
M J Smerdon 《Biochemistry》1983,22(14):3516-3525
The rate and extent of redistribution of repair-incorporated nucleotides within chromatin during very early times (10-45 min) after ultraviolet irradiation were examined in normal human fibroblasts treated with 20 mM sodium butyrate, or 2-10 mM hydroxyurea, and compared to results for untreated cells. Under these conditions, DNA replicative synthesis is reduced to very low levels in each case. However, DNA repair synthesis is stimulated by sodium butyrate and partially inhibited by hydroxyurea. Furthermore, in the sodium butyrate treated cells, the core histones are maximally hyperacetylated. Using methods previously described by us, it was found that treatment with sodium butyrate had little or no effect on either the rate or the extent of redistribution of repair-incorporated nucleotides during this early time interval. On the other hand, there was a 1.7-2.5-fold decrease in the rate of redistribution of these nucleotides in cells treated with hydroxyurea; the extent of redistribution was unchanged in these cells. Since hydroxyurea has been shown to decrease the rate of completion of "repair patches" in mammalian cells, these results indicate that nucleosome rearrangement in newly repaired regions of DNA does not occur until after the final stages of the excision repair process are completed. Furthermore, hyperacetylation of the core histones in a large fraction of the total chromatin prior to DNA damage and repair synthesis does not appear to alter the rate or extent of nucleosome core formation in newly repaired regions of DNA.  相似文献   

6.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 ± 115 fmol/μg DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 ± 17 fmol/μg DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

7.
S L Dresler 《Biochemistry》1985,24(24):6861-6869
The effect of pretreatment with sodium butyrate on DNA excision repair was studied in intact and permeable confluent (i.e., growth-inhibited) diploid human fibroblasts. Exposure to 20 mM sodium butyrate for 48 h increased subsequent ultraviolet (UV)-induced [methyl-3H]thymidine incorporation by intact AG1518 fibroblasts by 1.8-fold and by intact IMR-90 fibroblasts by 1.2-1.3-fold. UV-induced incorporation of deoxy[5-3H]cytidine, deoxy[6-3H]cytidine, and deoxy[6-3H]uridine, however, showed lesser degrees of either stimulation or inhibition in butyrate-pretreated cells. This result suggested that measurements of butyrate's effect on DNA repair synthesis in intact cells are confounded by simultaneous changes in nucleotide metabolism. The effect of butyrate on excision repair was also studied in permeable human fibroblasts in which excision repair is dependent on exogenous nucleotides. Butyrate pretreatment stimulated UV-induced repair synthesis by 1.3-1.7-fold in permeable AG1518 cells and by 1.5-2-fold in permeable IMR-90 cells. This stimulation of repair synthesis was not due to changes in repair patch size or composition or in the efficiency of DNA damage production but rather resulted from a butyrate-induced increase in the rate of damage-specific incision of DNA. The increased rate of incision in butyrate-pretreated cells could be due either to increased levels of enzymes mediating steps in excision repair at or before incision or to alterations in chromatin structure making damage sites in DNA more accessible to repair enzymes.  相似文献   

8.
Previous work from this laboratory (Rovera and Baserga, 1971) has shown that, when density-inhibited WI-38 human diploid fibroblasts are stimulated to proliferate by a change of medium, the synthesis of nuclear acidic proteins increases within 30 minutes after stimulation; several hours before DNA synthesis begins to increase. Similar results have now been obtained with density-inhibited 3T6 mouse fibroblasts, also stimulated by a change of medium. Gel electrophoretic analysis of nuclear acidic proteins in both WI-38 human diploid fibroblasts and 3T6 mouse fibroblasts stimulated to proliferate indicates that the increased synthesis of nuclear acidic proteins is limited to certain classes of proteins while other classes are totally unaffected. The increase in nuclear acidic proteins synthesis is inhibited when WI-38 cells or 3T6 cells are stimulated in the presence of 5-azacytidine (10 μg/ml), a treatment which also inhibits the subsequent stimulation of DNA synthesis. These results, confirming and extending similar findings previously reported in other models of stimulated DNA synthesis, lend further support to the hypothesis that nuclear acidic proteins may play a critical role in the control of DNA synthesis and cell division in mammalian cells.  相似文献   

9.
Previous studies have shown that treatment of cultured fibroblasts with millimolar concentrations of sodium butyrate results in increased methylation of cytosine residues in DNA. In this study, active nucleosomes were fractionated from the inactive ones by organomercurial agarose column chromatography. DNA in each fraction was hydrolyzed to its constituent bases and subjected to HPLC analysis in order to determine the 5-methylcytosine content. In control cells, the active nucleosomal DNA was hypomethylated (0.97 ± 0.27% 5-methylcytosine) when compared with the inactive DNA fraction (1.61 ± 0.15%). This result was not unexpected since DNA hypermethylation is generally associated with gene inactivation. Treatment of cells with sodium butyrate, however, resulted in increased methylation of the active nucleosomal DNA such that it was comparable to that of the inactive fraction of control cells (1.73 ± 0.02% 5-methylcytosine). A much smaller increase in 5-methylcytosine content was detected in the inactive DNA fraction of sodium butyrate-treated cells (from 1.61 to 1.89%). Removal of the sodium butyrate followed by a chase in butyrate-free medium for up to 120 h failed to reverse the butyrate-induced hypermethylation. Reversal was achieved only after continuous culture in butyrate-free medium for 10 days.  相似文献   

10.
In high-multiplicity infection of human fibroblasts, human cytomegalovirus of WI-38 human diploid cells produced early cell rounding 6 to 24 h after inoculation. This early cell rounding was caused only by inoculation with infectious virions. Inhibitors of protein synthesis, but not DNA inhibitors, prevented this cytopathic effect. Apparently, a new protein is synthesized in infected fibroblasts from about 2 h postinoculation. Infectivity of cell-associated and supernatant infectious virus reached maximal levels at 5 to 7 and 10 days postinoculation, respectively. Synthesis of DNA, infectious virus, complement-fixing antigen, and precipitin antigen all began between 24 and 48 h, with the bulk of synthesis occurring 48 to 96 h postinoculation.  相似文献   

11.
12.
The effect of sodium butyrate on Tipula iridescent virus (TIV) synthesis in suspension-cultured cells of Estigmene acrea was investigated. Sodium butyrate reduces viral-induced cell fusion but this is reversible with the removal of butyrate. At 7 mM sodium butyrate, TIV replicates in cells within 8 hr, but does not replicate in this time with 10–20 mm butyrate in the cell medium; cells so treated contain large vesicles with inoculum. Upon removal of the inhibitor, TIV replication appears normal, but large inoculum vesicles can still be found in the cytoplasm, and many infected cells have highly condensed chromatin in their nuclei. Sodium butyrate causes a lag of at least 2 hr in viral DNA synthesis as detected by [3H]thymidine incorporation into viroplasmic centres and at 7 mm butyrate viral DNA synthesis is reduced by 50–60%. In comparison, butyrate at 7 and 10 mm concentration does not inhibit host DNA synthesis, but at 15 and 20 mm, nuclear DNA synthesis is markedly reduced.  相似文献   

13.
Normal human embryonic lung fibroblasts WI-38 differentiate spontaneously along the cell lineage mitotic fibroblasts (MF) I, II, and III and postmitotic fibroblasts (PMF) IV, V, VI, and VII in the fibroblast stem cell system in vitro, when appropriate methods are applied. The mitotic fibroblasts can be induced to shift to postmitotic fibroblasts by two treatments with mitomycin C (2× MMC) in a short period of time compared to spontaneous development. Mitotic and postmitotic fibroblast cell types have specific morphological and biochemical properties, e.g., [35S]methionine polypeptide markers in 2D PAGE. Spontaneously arisen and experimentally induced (2× MMC) PMF have the same morphological and biochemical characteristics. Mitotic fibroblasts have 2n DNA and undergo DNA synthesis for reduplication. Postmitotic cells undergo, on average, two rounds of DNA synthesis for endoreduplication (polyploidization). Spontaneously arisen and experimentally induced postmitotic populations are composed of postmitotic fibroblasts PMF IV, V, and VI with 2n, 4n, and 8n DNA. DNA synthesis of mitotic and postmitotic WI-38 cell populations may be regulated by the expression of Fos and Jun proteins. The Fos level of MFs was higher by a factor of 15-24 and the Jun level of MFs by a factor of 4.2-6.3 than those of spontaneously arisen PMFs. In 2× MMC-induced PMFs, the Fos level was about 4.4-7.5 times higher and the Jun level 1.7-3.3 times higher than that of spontaneously arisen PMFs. The down-regulation of these two parameters is a normal event in the development of mitotic to postmitotic WI-38 fibroblasts in the fibroblast stem cell system and is not related to cellular aging.  相似文献   

14.
Bleomycin is a chemotherapeutic agent sometimes associated with pulmonary fibrosis and skin lesions in patients undergoing treatment. We examined the mechanisms of increased collagen deposition on bleomycin-induced fibrosis by incubating human lung and skin fibroblast cultures with [14C]proline; the synthesis of [14C]hydroxyproline relative to DNA or cell protein was taken as an index of procollagen formation. Procollagen synthesis by lung cells in the presence of 0.1 and 1.0 microgram/ml bleomycin was significantly increased and similar results were obtained with skin fibroblasts. The relative synthesis of genetically distinct types of collagen was measured by isolating the newly synthesized type I and type III procollagens by DEAE-cellulose chromatography. The proportion of type III procollagen of total newly synthesized procollagen in control lung fibroblast cultures was 17.4 +/0 0.6% (mean +/- S.E.) while the corresponding value in cells incubated in 1 microgram/ml bleomycin was 12.5 +/- 0.6% (n = 6, P < 0.01). Similar results were obtained when the ratios of newly synthesized type I and type III collagens were estimated by interrupted polyacrylamide disc gel electrophoresis in sodium dodecyl sulfate after a limited proteolytic digestion with pepsin. The results indicate that the increased procollagen synthesis induced by bleomycin in fibroblast cultures is predominantly directed towards the synthesis of type I procollagen.  相似文献   

15.
16.
The presence of C3 receptor sites on the cell surfaces of WI-38 fibroblasts was reported in a previous paper. Here the effect of dexamethasone sodium sulfate of C3 receptor site function was studied. The incubation of WI-38 fibroblasts with dexamethasone sodium sulfate produces the biphasic mode of action, i.e., the growth-stimulating phase with low doses (90–230 μg/ml) and the growth-inhibiting phase with high doses (450–900 μg/ml). The function of C3 receptor sites on WI-38 fibroblasts seems to be very stable and cannot be suppressed by the pretreatment of WI-38 fibroblasts with dexamethasone in high concentrations, where the cell growth is inhibited.  相似文献   

17.
When WI-38 human diploid fibroblasts become confluent, they stop synthesizing DNA and dividing. Addition of serum causes the quiescent cell to reenter the cell cycle. Prolonged quiescence after confluence decreases and delays the response to serum. For a few days after reaching confluence, WI-38 cells also respond to platelet-poor plasma. During this period, although not cycling, WI-38 cells still express c-myc and other growth-regulated genes, as measured by steady-state RNA levels. If the quiescence is prolonged further, c-myc expression (and that of two other growth-regulated genes) is no longer detectable, and its disappearance coincides with a loss of response to platelet-poor plasma. These results suggest that, also under physiological conditions, the expression of c-myc and other growth-regulated genes can cooperate with platelet-poor plasma in inducing cellular DNA synthesis in human diploid fibroblasts.  相似文献   

18.
Infection of WI-38 human fibroblasts with varicella-zoster virus led to the stimulation of host cell DNA polymerase synthesis and induction of a new virus-specific DNA polymerase. This virus-induced DNA polymerase was partially purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. This virus-induced enzyme could be distinguished from host cell enzyme by its chromatographic behavior, template specificity, and its requirement of salt for maximal activity. The enzyme could efficiently use poly(dC).oligo(dG)12-18 as well as poly(dA).oligo(dT)12-18 as template-primers. It required Mg2+ for maximal polymerization activity and was sensitive to phosphonoacetic acid, to which host alpha- and beta-DNA polymerase were relatively resistant. In addition, this induced DNA polymerase activity was enhanced by adding 60 mM (NH4)2SO4 to the reaction mixture.  相似文献   

19.
The cell line 4IC6, adapted for growth in 6 mM sodium butyrate from Hepatoma Tissue Culture cells [R. Chalkley, and A. Shires (1985) J. Biol. Chem. 260, 7698-7704], exhibits a fourfold increase in histone acetate turnover. The 4IC6 cells were about 25 times more resistant to butyrate relative to the parental cell line as measured by cloning efficiency. This line also maintains a flatter and more extended morphology when growing in the presence of 6 mM sodium butyrate relative to the parental line. Both cell lines maintain similar intracellular butyrate levels and incorporate [1-14C]butyrate into lipids to similar extents when incubated in medium containing high levels of the fatty acid. These results show that 4IC6 cells have not attained butyrate resistance through acquiring the ability to metabolize butyrate more efficiently or in a significantly different manner when compared with the parental cell line. The membrane lipid composition was nearly identical between the two cell types. Thus the different morphologies exhibited by each cell line were not a consequence of altered membrane lipid composition. The resistant line, 4IC6, maintains about 10-fold higher cholesterol ester levels and half the level of triglycerides found in the parental line. The butyrate-resistant cells also synthesize cholesterol at about a 1.8-fold higher rate than do the parental cells. This difference in de novo synthesis is reflected by a difference of a similar factor in the amount of radioactive cholesterol the two cell lines accumulate over 12 generations. These results are discussed with respect to models for equilibration of serum lipoprotein-derived and newly synthesized cholesterol.  相似文献   

20.
Trypsinization of confluent monolayers of WI-38 cells causes an extensive loss of nuclear proteins. The loss of nuclear proteins is restored only several hours after the cells have been replated at a lower density in 10% serum. When trypsinized fibroblasts are replated at a lower density in 10% serum, there is also a sustained progressive leading to DNA synthesis and cell division. If 0.3% serum is used instead of 10%, there is a modest increase in nuclear template activity, but not accumulation of nuclear proteins and no DNA synthesis or cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号