首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Small GTP-binding proteins of the highly conserved Rho family act as molecular switches regulating cell signalling, cytoskeletal organization and vesicle trafficking in eukaryotic cells. Here we show that in the dimorphic plant pathogenic fungus Ustilago maydis deletion of either cdc42 or rac1 results in loss of virulence but does not interfere with viability. Cells deleted for cdc42 display a cell separation defect during budding. We have previously shown that the Rho-specific guanine nucleotide exchange factor (GEF) Don1 is required for cell separation in U. maydis. Expression of constitutive active Cdc42 rescues the phenotype of don1 mutant cells indicating that Don1 triggers cell separation by activating Cdc42. Deletion of rac1 affects cellular morphology and interferes with hyphal growth, whereas overexpression of wild-type Rac1 induces filament formation in haploid cells. This indicates that Rac1 is both necessary and sufficient for the dimorphic switch from budding to hyphal growth. Cdc42 and Rac1 share at least one common essential function because depletion of both Rac1 and Cdc42 is lethal. Expression of constitutively active Rac1(Q61L) is lethal and results in swollen cells with a large vacuole. The morphological phenotype, but not lethality is suppressed in cla4 mutant cells suggesting that the PAK family kinase Cla4 acts as a downstream effector of Rac1.  相似文献   

3.
4.
Dimorphic switching from budding to filamentous growth is a characteristic feature of many pathogenic fungi. In the fungal model organism Ustilago maydis polarized growth is induced by the multiallelic b mating type locus and requires the Rho family GTPase Rac1. Here we show that mating type-induced polarized growth involves negative feedback regulation of the Rac1-specific guanine nucleotide exchange factor (GEF) Cdc24. Although Cdc24 is essential for polarized growth, its concentration is drastically diminished during filament formation. Cdc24 is part of a protein complex that also contains the scaffold protein Bem1 and the PAK kinase Cla4. Activation of Rac1 results in Cla4-dependent degradation of the Rac1-GEF Cdc24, thus creating a regulatory negative feedback loop. We generated mutants of Cdc24 that are resistant to Cla4-dependent destruction. Expression of stable Cdc24 variants interfered with filament formation, indicating that negative feedback regulation of Cdc24 is critical for the establishment of polarized growth.  相似文献   

5.
Sexual development in fungi is controlled by mating type loci that prevent self-fertilization. In the phytopathogenic fungus Ustilago maydis , the b mating type locus encodes two homeodomain proteins, termed bE and bW. After cell fusion, a heterodimeric bE/bW complex is formed if the proteins are derived from different alleles. The bE/bW complex is required and sufficient to initiate pathogenic development and sexual reproduction; for the stages of pathogenic development succeeding plant penetration, however, its role was unclear. To analyse b function during in planta development, we generated a temperature-sensitive bEts protein by exchange of a single amino acid. bE ts strains are stalled in pathogenic development at restrictive temperature in planta , and hyphae develop enlarged, bulbous cells at their tips that contain multiple nuclei, indicating a severe defect in the control and synchronization of cell cycle and cytokinesis. DNA array analysis of bE ts mutant strains in planta revealed a b -dependent regulation of genes encoding secreted proteins that were shown to influence fungal virulence. Our data demonstrate that in U. maydis the b heterodimer is not only essential to establish the heterodikaryon after mating of two compatible sporidia and to initiate fungal pathogenicity, but also to sustain in planta proliferation and ensure sexual reproduction.  相似文献   

6.
7.
The increasing evidence linking regulation of polar growth and pathogenicity in fungi has elicited a significant effort devoted to produce a better understanding of mechanisms determining polarization in pathogenic fungi. Here we characterize in the phytopathogenic basidiomycete Ustilago maydis, the Spa2 protein, a well-known component of polarisome, firstly described in Saccharomyces cerevisiae. U. maydis display a dimorphic switch between budding growth of hapoid cells and filamentous growth of the dikaryon. During yeast growth, a GFP-tagged Spa2 protein localized to distinct growth sites in a cell cycle-specific manner, while during hyphal growth is persistently located to hyphal tips. Deletion of spa2 gene produces rounder budding cells and thicker filaments than wild-type cells, suggesting a role of Spa2 for the determination of the growth area in U. maydis. We also address the connections between Spa2 and the actin- and microtubule-cytoskeleton. We found that the absence of Spa2 does not affect cytoskeleton organization and strikingly, interference with actin filament or microtubule formation does not affect the polar localization of Spa2. In contrast, defects in the small GTPase Rac1 seems to affect the ability of Spa2 to locate to precise sites at the tip cell. Finally, to our surprise, we found that cells defectives in Spa2 function were as pathogenic as wild-type cells.  相似文献   

8.
9.
In the phytopathogenic fungus Ustilago hordei, one locus with two alternate alleles, MAT-1 and MAT-2, controls mating and the establishment of the infectious dikaryon (bipolar mating). In contrast, for U. maydis, these functions are associated with two different gene complexes, called a and b (tetrapolar mating); the a complex has two alternate specificities, and the b gene complex is multiallelic. We have found homologs for the b gene complex in U. hordei and have cloned one from each mating type using sequences from one bEast allele of U. maydis as a probe. Sequence analysis revealed two divergent open reading frames in each b complex, which we called bW (bWest) and bE (bEast) in analogy with the b gene complex of U. maydis. The predicted bW and bE gene products from the two different mating types showed approximately 75% identity when homologous polypeptides were compared. All of the characterized bW and bE gene products have variable amino-terminal regions, conserved carboxy-terminal regions, and similar homeodomain motifs. Sequence comparisons with the bW1 and bE1 genes of U. maydis showed conservation in organization and structure. Transformation of the U. hordei b gene complex into a U. hordei strain of opposite mating type showed that the b genes from the two mating types are functional alleles. The U. hordei b genes, when introduced into U. maydis, rendered the haploid transformants weakly pathogenic on maize. These results indicate that structurally and functionally conserved b genes are present in U. hordei.  相似文献   

10.
In the corn smut fungus Ustilago maydis, pathogenic development is controlled by the b mating type locus that encodes the two homeodomain proteins bE and bW. A heterodimer of bE and bW controls a large set of genes, either directly by binding to cis regulatory sequences or indirectly via a b-dependent regulatory cascade. It is thought that several of the b-regulated genes contribute to processes involved in pathogenicity. In a screen for components of the b-dependent regulatory cascade we have isolated Hda1, a protein with homology to histone deacetylases of the RPD3 class. Hda1 can substitute for the histone deacetylase RPD3 in Saccharomyces cerevisiae, showing that it functions as a histone deacetylase. Deletion of hda1 results in the expression of several genes that are normally expressed only in the dikaryon, among these are several genes that are now expressed independently from their activation by the bE/bW heterodimer. hda1 mutant strains are capable to infect corn, and the proliferation of dikaryotic hyphae within the plant appears comparable to wild-type strains during initial developmental stages. Upon karyogamy, however, the proliferation to mature teliospores is blocked. The block in sporogenesis in Deltahda1 strains is probably a result of the deregulation of a specific set of genes whose temporal or spatial expression prevent the proper developmental progress.  相似文献   

11.
Morphogenesis and pathogenesis are closely associated aspects of the life cycle of the fungal pathogen Ustilago maydis. In this fungus, the dimorphic switch from budding to filamentous growth coincides with the transition from non-pathogenic to pathogenic growth on maize. We have cloned and characterized the ukb1 gene that encodes a putative serine/threonine protein kinase with a role in budding and filamentous growth. Mutants defective in ukb1 were altered in bud site selection and produced lateral buds at a greater frequency than wild-type cells. Dikaryotic cells defective in ukb1 were capable of colonizing host tissue and growing with a filamentous morphology in planta. However, the mutants were incapable of inducing tumor formation and they failed to complete sexual development. In addition, the ukb1 gene influenced the ability of colonies to form aerial mycelia in response to environmental stimuli. Overall, the discovery of ukb1 reinforces the connection between morphogenesis and pathogenesis in U. maydis.  相似文献   

12.
L. Giasson  J. W. Kronstad 《Genetics》1995,141(2):491-501
Mating between haploid, budding cells of the dimorphic fungus Ustilago maydis results in the formation of a dikaryotic, filamentous cell type. Mating compatibility is governed by two mating-type loci called a and b; transformation of genes from these loci (e.g., a1 and b1) into a haploid strain of different mating type (e.g., a2 b2) allows filamentous growth and establishes a pathogenic cell type. Several mutants with a nonmycelial colony morphology were isolated after insertional mutagenesis of a filamentous, pathogenic haploid strain. The mutagenized region in one such mutant was recovered by plasmid rescue and employed to isolate a gene involved in conditioning the mycelial phenotype (myp1). An 1150 amino acid open reading frame is present at the myp1 locus; the predicted polypeptide is rich in serine residues and contains short regions with similarity to SH3 domain ligands. Construction of myp1 disruption and deletion mutants in haploid strains confirmed that this gene plays a role in mycelial growth and virulence.  相似文献   

13.
The phytopathogenic basidiomycete Ustilago maydis displays a dimorphic switch between budding growth of haploid cells and filamentous growth of the dikaryon. In a screen for mutants affected in morphogenesis and cytokinesis, we identified the serine/threonine protein kinase Cla4, a member of the family of p21-activated kinases (PAKs). Cells, in which cla4 has been deleted, are viable but they are unable to bud properly. Instead, cla4 mutant cells grow as branched septate hyphae and divide by contraction and fission at septal cross walls. Delocalized deposition of chitinous cell wall material along the cell surface is observed in cla4 mutant cells. Deletion of the Cdc42/Rac1 interaction domain (CRIB) results in a constitutive active Cla4 kinase, whose expression is lethal for the cell. cla4 mutant cells are unable to induce pathogenic development in plants and to display filamentous growth in a mating reaction, although they are still able to secrete pheromone and to undergo cell fusion with wild-type cells. We propose that Cla4 is involved in the regulation of cell polarity during budding and filamentation.  相似文献   

14.
15.
16.
Ustilago maydis, the causal agent of corn smut disease, displays dimorphic growth in which it alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. We are interested in identifying the genetic determinants of filamentous growth and pathogenicity in U. maydis. To do this we have taken a forward genetic approach. Earlier, we showed that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Mutagenesis of a uac1 disruption strain allowed the isolation of a large number of budding suppressor mutants. These mutants are named ubc, for Ustilago bypass of cyclase, as they no longer require the production of cyclic AMP (cAMP) to grow in the budding morphology. Complementation of a subset of these suppressor mutants led to the identification of the ubc4 and ubc5 genes, which are required for filamentous growth and encode a MAP (mitogen-activated protein) kinase kinase kinase and a MAP kinase kinase, respectively. Evidence suggests that they are important in the pheromone response pathway and in pathogenicity. These results further support an important interplay of the cAMP and MAP kinase signal transduction pathways in the control of morphogenesis and pathogenicity in U. maydis.  相似文献   

17.
During its haploid phase the dimorphic fungus Ustilago maydis grows vegetatively by budding. We have identified two genes, don1 and don3, which control the separation of mother and daughter cells. Mutant cells form tree-like clusters in liquid culture and grow as ring-like (donut-shaped) colonies on solid medium. In wild-type U. maydis cells, two distinct septa are formed during cytokinesis and delimit a fragmentation zone. Cells defective for either don1 or don3 display only a single septum and fail to complete cell separation. don1 encodes a guanine nucleotide exchange factor (GEF) of the Dbl family specific for Rho/Rac GTPases. Don3 belongs to the germinal-centre-kinase (GC) subfamily of Ste20-like protein kinases. We have isolated the U. maydis homologues of the small GTP binding proteins Rho2, Rho3, Rac1 and Cdc42. Out of these, only Cdc42 interacts specifically with Don1 and Don3 in the yeast two-hybrid system. We propose that Don1 and Don3 regulate the initiation of the secondary septum, which is required for proper cell separation.  相似文献   

18.
19.
20.
The phytopathogenic fungus Ustilago maydis undergoes a dimorphic transition in response to mating pheromone, host, and environmental cues. On a solid medium deficient in ammonium (SLAD [0.17% yeast nitrogen base without ammonium sulfate or amino acids, 2% dextrose, 50 μM ammonium sulfate]), U. maydis produces a filamentous colony morphology, while in liquid SLAD, the cells do not form filaments. The p21-activated protein kinases (PAKs) play a substantial role in regulating the dimorphic transition in fungi. The PAK-like Ste20 homologue Smu1 is required for a normal response to pheromone, via upregulation of pheromone expression, and virulence, and its disruption affects both processes. Our experiments suggest that Smu1 also regulates cell length and the filamentous response on solid SLAD medium. Yeast two-hybrid analysis suggested an Hsl7 homologue as a potential interacting partner of Smu1, and a unique open reading frame for such an arginine methyltransferase was detected in the U. maydis genome sequence. Hsl7 regulates cell length and the filamentous response to solid SLAD in a fashion opposite to that of Smu1, but neither overexpression nor disruption of hsl7 attenuates virulence. Simultaneous disruption of hsl7 and overexpression of smu1 lead to a hyperfilamentous response on solid SLAD. Moreover, only this double mutant strain forms filaments in liquid SLAD. The double mutant strain was also significantly reduced in virulence. A similar filamentous response in both solid and liquid SLAD was observed in strains lacking another PAK-like protein kinase involved in cytokinesis and polar growth, Cla4. Our data suggest that Hsl7 may regulate cell cycle progression, while both Smu1 and Cla4 appear to be involved in the filamentous response in U. maydis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号