首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive (86)Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O(2)), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK.  相似文献   

2.
Increased transport of Na across an intact blood-brain barrier (BBB) contributes to cerebral edema formation in ischemic stroke. Our previous studies have shown that ischemic factors stimulate activity of a luminal BBB Na-K-Cl cotransporter, and we have hypothesized that during ischemia, the cotransporter together with the abluminal Na/K pump mediates increased transport of Na from blood into the brain. However, it is possible that elevated Na-K-Cl cotransporter activity could also cause cell swelling if it outpaces ion efflux pathways. The present study was conducted to evaluate the effects of hypoxia on intracellular volume of BBB cells. Cerebral microvascular endothelial cell (CMEC) monolayers were exposed to varying levels of hypoxia for 1 to 5 h in an O(2)-controlled glove box, and cell volume was assessed using 3-O-methyl-D-[(3)H]glucose and [(14)C]sucrose as markers of total and extracellular water space, respectively. Cells exposed to either 7.5%, 3%, or 1% O(2) showed gradual increases in volume (compared with 19% O(2) normoxic controls) that became significant after 3 or more hours. By ion chromatography methods, we also found that a 30-min exposure to 7.5% O(2) caused an increase in bumetanide-sensitive net Na uptake by the cells without increasing cell Na content. CMEC Na content was significantly increased, however, following 3 or more hours of exposure to 7.5% O(2). These findings are consistent with the hypothesis that during cerebral ischemia, the BBB Na-K-Cl cotransporter is stimulated to mediate transendothelial uptake of Na into the brain and that increased cotransporter activity also contributes to gradual swelling of the cells.  相似文献   

3.
Brain edema that forms during the early stages of stroke involves increased transport of Na+ and Cl across an intact blood-brain barrier (BBB). Our previous studies have shown that a luminal BBB Na+-K+-Cl cotransporter is stimulated by conditions present during ischemia and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema formation in the rat middle cerebral artery occlusion model of stroke. The present study focused on investigating the effects of hypoxia, which develops rapidly in the brain during ischemia, on the activity and expression of the BBB Na+-K+-Cl cotransporter, as well as on Na+-K+-ATPase activity, cell ATP content, and intracellular volume. Cerebral microvascular endothelial cells (CMECs) were assessed for Na+-K+-Cl cotransporter and Na+-K+-ATPase activities as bumetanide-sensitive and ouabain-sensitive 86Rb influxes, respectively. ATP content was assessed by luciferase assay and intracellular volume by [3H]-3-O-methyl-D-glucose and [14C]-sucrose equilibration. We found that 30-min exposure of CMECs to hypoxia ranging from 7.5% to 0.5% O2 (vs. 19% normoxic O2) significantly increased cotransporter activity as did 7.5% or 2% O2 for up to 2 h. This was not associated with reduction in Na+-K+-ATPase activity or ATP content. CMEC intracellular volume increased only after 4 to 5 h of hypoxia. Furthermore, glucose and pyruvate deprivation increased cotransporter activity under both normoxic and hypoxic conditions. Finally, we found that hypoxia increased phosphorylation but not abundance of the cotransporter protein. These findings support the hypothesis that hypoxia stimulation of the BBB Na+-K+-Cl cotransporter contributes to ischemia-induced brain edema formation. edema; blood-brain barrier; bumetanide; cell volume  相似文献   

4.
We have studiedthe regulation of the K-Cl cotransporter KCC1 and its functionalinteraction with the Na-K-Cl cotransporter. K-Cl cotransporter activitywas substantially activated in HEK-293 cells overexpressing KCC1(KCC1-HEK) by hypotonic cell swelling, 50 mM external K, andpretreatment with N-ethylmaleimide(NEM). Bumetanide inhibited 86Rbefflux in KCC1-HEK cells after cell swelling [inhibition constant (Ki) ~190µM] and pretreatment with NEM(Ki ~60 µM).Thus regulation of KCC1 is consistent with properties of the red cellK-Cl cotransporter. To investigate functional interactions between K-Cland Na-K-Cl cotransporters, we studied the relationship between Na-K-Clcotransporter activation and intracellular Cl concentration([Cl]i). Without stimulation, KCC1-HEK cells had greater Na-K-Cl cotransporter activitythan controls. Endogenous Na-K-Cl cotransporter of KCC1-HEK cells wasactivated <2-fold by low-Cl hypotonic prestimulation, compared with10-fold activation in HEK-293 cells and >20-fold activation in cellsoverexpressing the Na-K-Cl cotransporter (NKCC1-HEK). KCC1-HEK cellshad lower resting[Cl]i than HEK-293cells; cell volume was not different among cell lines. We found a steeprelationship between[Cl]i and Na-K-Clcotransport activity within the physiological range, supporting aprimary role for [Cl]iin activation of Na-K-Cl cotransport and in apical-basolateral crosstalk in ion-transporting epithelia.  相似文献   

5.
Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. We demonstrated previously that the BBB cotransporter is stimulated by hypoxia, aglycemia, and AVP, factors present during cerebral ischemia. However, the underlying mechanisms have not been known. Ischemic conditions have been shown to activate p38 and JNK MAP kinases (MAPKs) in brain, and the p38 and JNK inhibitors SB-239063 and SP-600125, respectively, have been found to reduce brain damage following middle cerebral artery occlusion and subarachnoid hemorrhage, respectively. The present study was conducted to determine whether one or both of these MAPKs participates in ischemic factor stimulation of BBB NKCC activity. Cultured cerebral microvascular endothelial cell NKCC activity was evaluated as bumetanide-sensitive (86)Rb influx. Activities of p38 and JNK were assessed by Western blot and immunofluorescence methods using antibodies that detect total vs. phosphorylated (activated) p38 or JNK. We report that p38 and JNK are present in cultured cerebral microvascular endothelial cells and in BBB endothelial cells in situ and that hypoxia (7% O(2) and 2% O(2)), aglycemia, AVP, and O(2)-glucose deprivation (5- to 120-min exposures) all rapidly activate p38 and JNK in the cells. We also provide evidence that SB-239063 and SP-600125 reduce or abolish ischemic factor stimulation of BBB NKCC activity. These findings support the hypothesis that ischemic factor stimulation of the BBB NKCC involves activation of p38 and JNK MAPKs.  相似文献   

6.
Ion transporters of blood-brain barrier (BBB) endothelial cells play an important role in regulating the movement of ions between the blood and brain. During ischemic stroke, reduction in cerebral blood flow is accompanied by transport of Na and Cl from the blood into the brain, with consequent brain edema formation. We have shown previously that a BBB Na-K-Cl cotransporter (NKCC) participates in ischemia-induced brain Na and water uptake and that a BBB Na/H exchanger (NHE) may also participate. While the abrupt reduction of blood flow is a prominent component of ischemia, the effects of flow on BBB NKCC and NHE are not known. In the present study, we examined the effects of changes in shear stress on NKCC and NHE protein levels in cerebral microvascular endothelial cells (CMECs). We have shown previously that estradiol attenuates both ischemia-induced cerebral edema and CMEC NKCC activity. Thus, in the present study, we also examined the effects of estradiol on NKCC and NHE protein levels in CMECs. Exposing CMECs to steady shear stress (19 dyn/cm(2)) increased the abundance of both NKCC and NHE. Estradiol abolished the shear stress-induced increase in NHE but not NKCC. Abrupt reduction of shear stress did not alter NKCC or NHE abundance in the absence of estradiol, but it decreased NKCC abundance in estradiol-treated cells. Our results indicate that changes in shear stress modulate BBB NKCC and NHE protein levels. They also support the hypothesis that estradiol attenuates edema formation in ischemic stroke in part by reducing the abundance of BBB NKCC protein.  相似文献   

7.
In the early hours of ischemic stroke, cerebral edema forms as Na, Cl, and water are secreted across the blood-brain barrier (BBB) and astrocytes swell. We have shown previously that ischemic factors, including hypoxia, aglycemia, and arginine vasopressin (AVP), stimulate BBB Na-K-Cl cotransporter (NKCC) and Na/H exchanger (NHE) activities and that inhibiting NKCC and/or NHE by intravenous bumetanide and/or HOE-642 reduces edema and infarct in a rat model of ischemic stroke. Estradiol also reduces edema and infarct in this model and abolishes ischemic factor stimulation of BBB NKCC and NHE. There is evidence that NKCC and NHE also participate in ischemia-induced swelling of astrocytes. However, little is known about estradiol effects on astrocyte cell volume. In this study, we evaluated the effects of AVP (100 nM), hypoxia (7.5% O(2)), aglycemia, hypoxia (2%)/aglycemia [oxygen glucose deprivation (OGD)], and estradiol (1-100 nM) on astrocyte cell volume using 3-O-methyl-d-[(3)H]glucose equilibration methods. We found that AVP, hypoxia, aglycemia, and OGD (30 min to 5 h) each significantly increased astrocyte cell volume, and that estradiol (30-180 min) abolished swelling induced by AVP or hypoxia, but not by aglycemia or OGD. Bumetanide and/or HOE-642 also abolished swelling induced by AVP but not aglycemia. Abundance of aquaporin-4, known to participate in ischemia-induced astrocyte swelling, was significantly reduced following 7-day but not 2- or 3-h estradiol exposures. Our findings suggest that hypoxia, aglycemia, and AVP each contribute to ischemia-induced astrocyte swelling, and that the edema-attenuating effects of estradiol include reduction of hypoxia- and AVP-induced astrocyte swelling and also reduction of aquaporin-4 abundance.  相似文献   

8.
The trabecular meshwork (TM) of the eye plays a central role inmodulating intraocular pressure by regulating aqueous humor outflow,although the mechanisms are largely unknown. We and others have shownpreviously that aqueous humor outflow facility is modulated byconditions that alter TM cell volume. We have also shown that theNa-K-Cl cotransport system is a primary regulator of TM cell volume andthat its activity appears to be coordinated with net efflux pathways tomaintain steady-state volume. However, the cellular mechanisms thatregulate cotransport activity and cell volume in TM cells have yet tobe elucidated. The present study was conducted to investigate thehypothesis that intracellular Cl concentration([Cl]i) acts toregulate TM cell Na-K-Cl cotransport activity, as has been shownpreviously for some other cell types. We demonstrate here that thehuman TM cell Na-K-Cl cotransporter is highly sensitive to changes in[Cl]i. Our findingsreveal a marked stimulation of Na-K-Cl cotransport activity, assessedas ouabain-insensitive, bumetanide-sensitive K influx, in TM cells following preincubation of cells with Cl-free medium as a means ofreducing [Cl]i. Incontrast, preincubation of cells with media containing elevated Kconcentrations as a means of increasing [Cl]i results ininhibition of Na-K-Cl cotransport activity. The effects of reducing[Cl]i, as well aselevating [Cl]i, onNa-K-Cl cotransport activity are concentration dependent. Furthermore, the stimulatory effect of reduced[Cl]i is additive withcell-shrinkage-induced stimulation of the cotransporter. Our studiesalso show that TM cell Na-K-Cl cotransport activity is altered by avariety of Cl channel modulators, presumably through changes in[Cl]i. These findingssupport the hypothesis that regulation of Na-K-Cl cotransport activity,and thus cell volume, by[Cl]i may participatein modulating outflow facility across the TM.

  相似文献   

9.
VACM-1, a cullin gene family member, regulates cellular signaling   总被引:2,自引:0,他引:2  
Vasopressin-activated Ca2+-mobilizing (VACM-1)receptor binds arginine vasopressin (AVP) but does not haveamino acid sequence homology with the traditional AVP receptors.VACM-1, however, is homologous with a newly discovered cullin family ofproteins that has been implicated in the regulation of cell cyclethrough the ubiquitin-mediated degradation of cyclin-dependent kinase inhibitors. Because cell cycle processes can be regulated by the transmembrane signal transduction systems, the effects of VACM-1 expression on the Ca2+ and cAMP-dependent signaling pathwaywere examined in a stable cell line expressing VACM-1 in VACM-1transfected COS-1 cells and in cells cotransfected with VACM-1and the adenylyl cyclase-linked V2 AVP receptor cDNAs.Expression of the VACM-1 gene reduced basal as well as forskolin- andAVP-stimulated cAMP production. In cells cotransfected with VACM-1 andthe V2 receptor, the AVP- and forskolin-induced increasesin adenylyl cyclase activity and cAMP production were inhibited. Theinhibitory effect of VACM-1 on cAMP production could be reversed bypretreating cells with staurosporin, a protein kinase A (PKA)inhibitor, or by mutating S730A, the PKA-dependent phosphorylation sitein the VACM-1 sequence. The protein kinase C specific inhibitorGö-6983 further enhanced the inhibitory effect of VACM-1 onAVP-stimulated cAMP production. Finally, AVP stimulatedD-myo-inositol 1,4,5-trisphosphate productionboth in the transiently transfected COS-1 cells and in the stable cell line expressing VACM-1, but not in the control COS-1 and Chinese hamster ovary cells. Our data demonstrate that VACM-1, thefirst mammalian cullin protein to be characterized, is involved in the regulation of signaling.

  相似文献   

10.
To investigatethe Ca2+-dependent plasticity ofsarcoplasmic reticulum (SR) function in vascular smooth muscle,transient responses to agents releasing intracellularCa2+ by either ryanodine(caffeine) orD-myo-inositol1,4,5-trisphosphate [IP3;produced in response to norepinephrine (NE),5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptorsin rat tail arterial rings were evaluated after 4 days of organculture. Force transients induced by all agents were increased comparedwith those induced in fresh rings. Stimulation by 10% FCSduring culture further potentiated the force andCa2+ responses to caffeine (20 mM)but not to NE (10 µM), 5-HT (10 µM), or AVP (0.1 µM). The effectwas persistent, and SR capacity was not altered after reversibledepletion of stores with cyclopiazonic acid. The effects of serum couldbe mimicked by culture in depolarizing medium (30 mMK+) and blocked by the additionof verapamil (1 µM) or EGTA (1 mM) to the medium, loweringintracellular Ca2+ concentration([Ca2+]i)during culture. These results show that modulation of SR function canoccur in vitro by a mechanism dependent on long-term levels of basal[Ca2+]iand involving ryanodine- but notIP3 receptor-mediatedCa2+release.  相似文献   

11.
Primary brain tumors (gliomas) often present with peritumoral edema. Their ability to thrive in this osmotically altered environment prompted us to examine volume regulation in human glioma cells, specifically the relative contribution of Cl channels and transporters to this process. After a hyposmotic challenge, cultured astrocytes, D54-MG glioma cells, and glioma cells from human patient biopsies exhibited a regulatory volume decrease (RVD). Although astrocytes were not able to completely reestablish their original prechallenge volumes, glioma cells exhibited complete volume recovery, sometimes recovering to a volume smaller than their original volumes (VPost-RVD < Vbaseline). In glioma cells, RVD was largely inhibited by treatment with a combination of Cl channel inhibitors, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and Cd2+ (VPost-RVD > 1.4*Vbaseline). Volume regulation was also attenuated to a lesser degree by the addition of R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA), a known K+-Cl cotransporter (KCC) inhibitor. To dissect the relative contribution of channels vs. transporters in RVD, we took advantage of the comparatively high temperature dependence of transport processes vs. channel-mediated diffusion. Cooling D54-MG glioma cells to 15°C resulted in a loss of DIOA-sensitive volume regulation. Moreover, at 15°C, the channel blockers NPPB + Cd2+ completely inhibited RVD and cells behaved like perfect osmometers. The calculated osmolyte flux during RVD under these experimental conditions suggests that the relative contribution of Cl channels vs. transporters to this process is 60–70% and 30–40%, respectively. Finally, we identified several candidate proteins that may be involved in RVD, including the Cl channels ClC-2, ClC-3, ClC-5, ClC-6, and ClC-7 and the transporters KCC1 and KCC3a. voltage-gated chloride channel family; potassium-chloride cotransporters; peritumoral edema  相似文献   

12.
Microsphere embolism (ME)-induced up-regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells of brain microvessels was observed 2-48 h after ischemia. eNOS induction preceded disruption of the blood-brain barrier (BBB) observed 6-72 h after ischemia. In vascular endothelial cells, ME-induced eNOS expression was closely associated with protein tyrosine nitration, which is a marker of generation of peroxynitrite. Leakage of rabbit IgG from microvessels was also evident around protein tyrosine nitration-immunoreactive microvessels. To determine whether eNOS expression and protein tyrosine nitration in vascular endothelial cells mediates BBB disruption in the ME brain, we tested the effect of a novel calmodulin-dependent NOS inhibitor, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), which inhibits eNOS activity and, in turn, protein tyrosine nitration. Concomitant with inhibition of protein tyrosine nitration in vascular endothelial cells, DY-9760e significantly inhibited BBB disruption as assessed by Evans blue (EB) excretion. DY-9760e also inhibited cleavage of poly (ADP-ribose) polymerase as a marker of the apoptotic pathway in vascular endothelial cells. Taken together with previous evidence in which DY-9760e inhibited brain edema, ME-induced eNOS expression in vascular endothelial cells likely mediates BBB disruption and, in turn, brain edema.  相似文献   

13.
In mildly hyperosmotic medium, activation of the Na+-K+-2Cl- cotransporter (NKCC) counteracts skeletal muscle cell water loss, and compounds that stimulate protein kinase A (PKA) activity inhibit the activation of the NKCC. The aim of this study was to determine the mechanism for PKA inhibition of NKCC activity in resting skeletal muscle. Incubation of rat slow-twitch soleus and fast-twitch plantaris muscles in isosmotic medium with the PKA inhibitors H-89 and KT-5720 caused activation of the NKCC only in the soleus muscle. NKCC activation caused by PKA inhibition was insensitive to MEK MAPK inhibitors and to insulin but was abolished by the PKA stimulators isoproterenol and forskolin. Furthermore, pinacidil [an ATP-sensitive potassium (KATP) channel opener] or inhibition of glycolysis increased NKCC activity in the soleus muscle but not in the plantaris muscle. Preincubation of the soleus muscle with glibenclamide (a KATP channel inhibitor) prevented the NKCC activation by hyperosmolarity, PKA inhibition, pinacidil, and glycolysis inhibitors. In contrast, glibenclamide stimulated NKCC activity in the plantaris muscle. In cells stably transfected with the Kir6.2 subunit of the of KATP channel, inhibition of glycolysis activated potassium current and NKCC activity. We conclude that activation of KATP channels in slow-twitch muscle is necessary for activation of the NKCC and cell volume restoration in hyperosmotic conditions. protein kinase A; glibenclamide; glycolysis; Na+-K+-2Cl- cotransporter; Kir6.2  相似文献   

14.
The cerebrospinalfluid (CSF)-generating choroid plexus (CP) has manyV1 binding sites for argininevasopressin (AVP). AVP decreases CSF formation rate and choroidal bloodflow, but little is known about how AVP alters ion transport across theblood-CSF barrier. Adult rat lateral ventricle CP was loaded with36Cl,exposed to AVP for 20 min, and then placed in isotope-free artificial CSF to measure release of36Cl.Effect of AVP at 1012 to107 M on theCl efflux rate coefficient(in s1) was quantified.Maximal inhibition (by 20%) ofCl extrusion at109 M AVP was prevented bythe V1 receptor antagonist[-mercapto-,-cyclopentamethyleneproprionyl1,O-Me-Tyr2,Arg8]vasopressin.AVP also increased by more than twofold the number of dark and possiblydehydrated but otherwise morphologically normal choroid epithelialcells in adult CP. The V1 receptorantagonist prevented this AVP-induced increment in dark cell frequency.In infant rats (1 wk) with incomplete CSF secretory ability,109 M AVP altered neitherCl efflux nor dark cellfrequency. The ability of AVP to elicit functional and structuralchanges in adult, but not infant, CP epithelium is discussed in regardto ion transport, CSF secretion, intracranial pressure, and hydrocephalus.

  相似文献   

15.
The Na-K-Cl cotransporters are a class of membrane proteins that transport Na, K, and Cl ions into and out of a wide variety of epithelial and nonepithelial cells. The transport process mediated by Na-K-Cl cotransporters is characterized by electroneutrality (almost always with stoichiometry of 1Na:1K:2Cl) and inhibition by the loop diuretics bumetanide, benzmetanide, and furosemide. Presently, two distinct Na-K-Cl cotransporter isoforms have been identified by cDNA cloning and expression; genes encoding these two isoforms are located on different chromosomes and their gene products share approximately 60% amino acid sequence identity. The NKCC1 (CCC1, BSC2) isoform is present in a wide variety of tissues; most epithelia containing NKCC1 are secretory epithelia with the Na-K-Cl cotransporter localized to the basolateral membrane. By contrast, NKCC2 (CCC2, BSC1) is found only in the kidney, localized to the apical membrane of the epithelial cells of the thick ascending limb of Henle's loop and of the macula densa. Mutations in the NKCC2 gene result in Bartter's syndrome, an inherited disease characterized by hypokalemic metabolic alkalosis, hypercalciuria, salt wasting, and volume depletion. The two Na-K-Cl cotransporter isoforms are also part of a superfamily of cation-chloride cotransporters, which includes electroneutral K-Cl and Na-Cl cotransporters. Na-K-Cl cotransporter activity is affected by a large variety of hormonal stimuli as well as by changes in cell volume; in many tissues this regulation (particularly of the NKCCl isoform) occurs through direct phosphorylation/dephosphorylation of the cotransport protein itself though the specific protein kinases involved remain unknown. An important regulator of cotransporter activity in secretory epithelia and other cells as well is intracellular [Cl] ([Cl]i), with a reduction in [Cl]i being the apparent means by which basolateral Na-K-Cl cotransport activity is increased and thus coordinated with that of stimulated apical Cl channels in actively secreting epithelia.  相似文献   

16.
Steady laminarshear stress has been shown previously to markedly increase Na-K-Clcotransporter mRNA and protein in human umbilical vein endothelialcells and also to rapidly increase endothelial K+ andCl channel conductances. The present study was done toevaluate the effects of shear stress on Na-K-Cl cotransporter activity and protein expression in bovine aortic endothelial cells (BAEC) and todetermine whether changes in cotransporter expression may be dependenton early changes in K+ and Cl channelconductances. Confluent BAEC monolayers were exposed in aparallel-plate flow chamber to either steady shear stress (19 dyn/cm2) or purely oscillatory shear stress (0 ± 19 dyn/cm2) for 6-48 h. After shearing, BAEC monolayerswere assessed for Na-K-Cl cotransporter activity or were subjected toWestern blot analysis of cotransporter protein. Steady shear stress ledto a 2- to 4-fold increase in BAEC cotransporter protein levels and a1.5- to 1.8-fold increase in cotransporter activity, increases thatwere sustained over the longest time periods studied. Oscillatory flow,in contrast, had no effect on cotransporter protein levels. In thepresence of flow-sensitive K+ and Cl channelpharmacological blockers, the steady shear stress-induced increase incotransporter protein was virtually abolished. These results suggestthat shear stress modulates the expression of the BAEC Na-K-Clcotransporter by mechanisms that are dependent on flow-activated ion channels.

  相似文献   

17.
Abstract

The peptide encoded in the 5″ to 3″ direction by rat vasopressin complementary RNA, rat PVA (H-Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala-OH) and the corresponding bovine PVA (H-Ala-Pro-Trp-Ala-Val-Leu-Glu-Val-Ala-OH) were investigated with respect to their interaction with [8-arginine] vasopressin (AVP) and V2 vasopressin receptor binding and function. Rat or bovine PVA did neither affect the binding of the hormone to the V2 receptor of bovine kidney membranes and LLC-PK1 pig kidney cells nor influence the AVP-induced cAMP-production in LLC-PK1 cells. Rat PVA was further investigated by the use of vasopressin-specific polyclonal and monoclonal antibodies with differnt affinity and epitope specifity. Consistent with receptor binding studies no inhibition of [3H]AVP-binding in fluid- or solid-phase antibody binding tests after preincu-bation with PVA was found. Direct interaction of rat PVA and [3H]AVP measured on solid surface was not observed in contrast to specific binding of the hormone with NP II and antibodies. In our study no evidence for an interaction of AVP and its antisense peptides was found.  相似文献   

18.
Endogenous vasopressin does not mediate hypoxia-induced anapyrexia in rats   总被引:1,自引:0,他引:1  
The present study was designed to test the hypothesis thatarginine vasopressin (AVP) mediates hypoxia-induced anapyrexia. Therectal temperature of awake, unrestrained rats was measured before andafter hypoxic hypoxia, AVP-blocker injection, or a combination of thetwo. Control animals received saline injections of the same volume.Basal body temperature was 36.52 ± 0.29°C. We observed asignificant (P < 0.05) reduction inbody temperature of 1.45 ± 0.33°C after hypoxia (7% inspiredO2), whereas systemic andcentral injections of AVP V1- andAVP V2-receptor blockers caused nochange in body temperature. When intravenous injection of AVP blockerswas combined with hypoxia, we observed a reduction in body temperatureof 1.49 ± 0.41°C(V1-receptor blocker) and of 1.30 ± 0.13°C (V2-receptorblocker), similar to that obtained by application of hypoxia only.Similar results were observed when the blockers were injectedintracerebroventricularly. The data indicate that endogenous AVP doesnot mediate hypoxia-induced anapyrexia in rats.  相似文献   

19.
Neuroprotective effect of vasopressin analogues, arginine Vasopressin (AVP) and lysine Vasopressin (LVP) was evaluated against MgCl2 induced cerebral ischemia model. AVP significantly prevented (P < 0.01) MgCl2 (1M) induced cerebral ischemia as compared to lysine Vasopressin (LVP) which was less effective (P < 0.05). Pretreatment with PI-3 kinase inhibitors, Wortmannin and LY-294002 (50 microg/kg, ip) significantly attenuated the protective effects of vasopressin. AVP was also effective in reducing the maximal electroshock (MES) induced convulsive time and this protective effect was blocked by PI-3 kinase inhibitors. On the other hand, pretreatment with gap junction intracellular communication (GJIC) blocker, mephenamic acid (30 mg/kg, ip) significantly potentiated the MgCl2 induced cerebral ischemia. This enhancement of cerebral ischemia was not reversed by vasopressin analogue, LVP. The role of V1 vasopressin receptor was evaluated by pretreating the animals with non-selective V1 receptor antagonist, des Gly-NH2, d (CH2)5 [D-Tyr2, Thr4] OVT which reversed the effects of AVP suggesting a role for vasopressin V1 receptors. This study suggests that neurohypophyseal hormone, AVP is neuroprotective against MgCl2 induced cerebral ischemia and this effect is modulated by PI-3 kinase enzyme inhibitors and protein kinase C inhibitors through possible influence on the cerebral vascular tone. This study suggests that gap junctions have potential role in the induction of MgCl2 induced cerebral ischemia.  相似文献   

20.
Previous studies have shown that vascular endothelial cells exhibit a highly active Na-K-Cl cotransport system that is regulated by a variety of vasoactive hormones and neurotransmitters, suggesting that the cotransporter may play an important role in endothelial cell function. In this study, the regulation of endothelial cell Na-K-Cl cotransport was further investigated by probing the stimulus-transfer pathway by which vasoactive agents stimulate the cotransporter. Specifically, three peptides previously shown to stimulate cotransport activity (angiotensin II, vasopressin, and bradykinin) were evaluated. Na-K-Cl cotransport was assessed in cultured bovine aortic endothelial cells as bumetanide-sensitive K+ influx. Stimulation of Na-K-Cl cotransport by angiotensin II, vasopressin, or bradykinin was found to be reduced either by removal of extracellular Ca2+ or by treatment of the cells with 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate or 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In addition, the calmodulin antagonist W-7 was found to prevent stimulation of endothelial cell Na-K-Cl cotransport by the three peptides. These findings suggest that regulation of endothelial cell cotransport by these vasoactive peptides may be both Ca(2+)- and calmodulin-dependent. Angiotensin II, vasopressin, and bradykinin were also found to elevate phosphatidylinositol hydrolysis in the cultured endothelial cells. Thus, the possibility that regulation of endothelial Na-K-Cl cotransport by these vasoactive peptides also involves diacylglycerol activation of protein kinase C was investigated. A 10-min exposure of the endothelial cells to low doses of phorbol 12-myristate 13-acetate was found to reduce Na-K-Cl cotransport whether in the presence or absence of angiotensin II, vasopressin, or bradykinin. However, down-regulation of protein kinase C by a 40-h exposure to higher doses of the phorbol ester was found to elevate Na-K-Cl cotransport activity under both control and agonist-stimulated conditions, indicating that activation of protein kinase C results in inhibition of endothelial cell Na-K-Cl cotransport. Thus, protein kinase C activation may serve as negative feedback in the stimulus-transfer pathway by which these agonists regulate endothelial cell Na-K-Cl cotransport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号