首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since c-src overexpression increases colonic cell invasiveness and because both Src activity and urokinase receptor protein are elevated in invasive colon cancers, the present study was undertaken: 1) to determine if a constitutively active Src regulates urokinase receptor expression and 2) to identify required cis-elements and trans-acting factors. SW480 colon cancer cells transfected with an expression plasmid (c-srcY527F) encoding a constitutively active Src protein manifested increased urokinase receptor gene expression and Src activity. Treatment of the src transfectants with a Src-inhibitor (PD173955) reduced urokinase receptor protein levels and laminin degradation. Inasmuch as we recently implicated an upstream region of the urokinase receptor promoter (-152/-135) in constitutive urokinase receptor expression, we determined its role for the induction by src. Whereas the activity of a CAT reporter driven by this region was stimulated by c-srcY527F, the u-PAR promoter mutated at the Sp1-binding motif in the -152/-135 region was not. Nuclear extracts from the src transfectants demonstrated increased Sp1 binding to region -152/-135 compared with those from SW480 cells. Finally, endogenous urokinase receptor protein amounts in 10 colon cancers and corresponding normal colon correlated with Src specific activity. These data suggest that urokinase receptor gene expression is regulated by Src partly via increased Sp1 binding.  相似文献   

2.
Tumor hypoxia is associated with a poor prognosis for patients with various cancers, often resulting in an increase in metastasis. Moreover, exposure to hypoxia increases the ability of breast carcinoma cells to invade the extracellular matrix, an important aspect of metastasis. Here, we demonstrate that the hypoxic up-regulation of invasiveness is linked to reduced nitric oxide signaling. Incubation of human breast carcinoma cells in 0.5% versus 20% oxygen increased their in vitro invasiveness and their expression of the urokinase receptor, an invasion-associated molecule. These effects of hypoxia were inhibited by nitric oxide-mimetic drugs; and in a manner similar to hypoxia, pharmacological inhibition of nitric oxide synthesis increased urokinase receptor expression. The nitric oxide signaling pathway involves activation of soluble guanylyl cyclase (sGC) and the subsequent activation of protein kinase G (PKG). Culture of tumor cells under hypoxic conditions (0.5% versus 20% oxygen) resulted in lower cGMP levels, an effect that could be prevented by incubation with glyceryl trinitrate. Inhibition of sGC activity with a selective blocker or with the heme biosynthesis inhibitor desferrioxamine increased urokinase receptor expression. These compounds also prevented the glyceryl trinitrate-mediated suppression of urokinase receptor expression in cells incubated under hypoxic conditions. In contrast, direct activation of PKG using 8-bromo-cGMP prevented the hypoxia- and desferrioxamine-induced increases in urokinase receptor expression as well as the hypoxia-mediated enhanced invasiveness. Further involvement of PKG in the regulation of invasion-associated phenotypes was established using a selective PKG inhibitor, which alone increased urokinase receptor expression. These findings reveal that an important mechanism by which hypoxia increases tumor cell invasiveness (and possibly metastasis) requires inhibition of the nitric oxide signaling pathway involving sGC and PKG activation.  相似文献   

3.
We have previously reported that phosphorylation of human urokinase on Ser138/303 abolishes its catalytic-independent motogen and proadhesive abilities, whereas receptor binding is not affected. Here we show that substitution of the two relevant serines with glutamic acid residues impairs the ability of urokinase to mobilize a variety of human and mouse cell lines as well as human primary T lymphocytes. Accordingly, urokinase receptor-dependent signaling, leading to cytoskeletal rearrangements and paxillin re-distribution, does not occur in MCF-7 breast carcinoma cells exposed to 'phosphorylation-like' urokinase. Unlike the wild-type form, di-substituted urokinase is unable to induce the physical association of urokinase receptor with alphavbeta5 vitronectin receptor, which is required for MCF-7 urokinase-dependent cell migration. Finally, the di-substituted variant fails to activate p55fgr, a member of the Src tyrosine kinase family, which mediates cell migration and adhesion of U937 myelomonocytic cells. In conclusion, the finding that specific amino acid substitutions strongly interfere with the ability of urokinase to stimulate cell migration, and the associated intracellular events uncover a novel way to regulate urokinase receptor-dependent signaling.  相似文献   

4.
The urokinase receptor is a multi-functional protein that plays a central role in cell surface plasminogen activation, cell migration, and cell adhesion. We previously demonstrated that high affinity peptide ligands for the urokinase receptor, which are urokinase competitors, can be obtained from a 15mer peptide library (Goodson et al., 1994). In order to probe for additional urokinase receptor binding sites we affinity selected the same bacteriophage library on complexes of soluble urokinase receptor (suPAR) and the receptor binding domain of urokinase, residues 1-48 (uPA1-48). Bacteriophage were isolated which bound to suPAR and suPAR:uPA1-48 complexes with high yield. The peptide sequences encoded by these bacteriophage were distinct from those obtained previously on urokinase receptor expressing cells, and comprise two groups based upon effects on su-PAR:1-anilino-8-napthalene sulfonate (ANS) fluorescence, and vitronectin binding competition. Alanine scanning mutagensis of the soluble peptides was used to define minimal regions and key residues for suPAR binding by competition with the parent bacteriophage. A comparison of these results with sequences of domains of both vitronectin and integrin alpha-chains, which have been reported to be important for urokinase receptor binding, suggests that the homology with the peptide sequences selected is functionally significant.  相似文献   

5.
Prostate derived ETS factor (PDEF) is an ETS (epithelial-specific E26 transforming sequence) family member that has been identified as a potential tumor suppressor. In multiple invasive breast cancer cells, PDEF expression inhibits cell migration by preventing the acquisition of directional morphological polarity conferred by changes in cytoskeleton organization. In this study, microarray analysis was used to identify >200 human genes that displayed a common differential expression pattern in three invasive breast cancer cell lines after expression of exogenous PDEF protein. Gene ontology associations and data mining analysis identified focal adhesion, adherens junctions, cell adhesion, and actin cytoskeleton regulation as cell migration-associated interaction pathways significantly impacted by PDEF expression. Validation experiments confirmed the differential expression of four cytoskeleton-associated genes with known functional associations with these pathways: uPA, uPAR, LASP1, and VASP. Significantly, chromatin immunoprecipitation studies identified PDEF as a direct negative regulator of the metastasis-associated gene uPA and phenotypic rescue experiments demonstrate that exogenous urokinase plasminogen activator (uPA) expression can restore the migratory ability of invasive breast cancer cells expressing PDEF. Furthermore, immunofluorescence studies identify the subcellular relocalization of urokinase plasminogen activator receptor (uPAR), LIM and SH3 protein (LASP1), and vasodilator-stimulated protein (VASP) as a possible mechanism accounting for the loss of morphological polarity observed upon PDEF expression.  相似文献   

6.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector inducing invasion and metastasis of tumor cells that express the Met tyrosine kinase receptor. One of the effectors of HGF/SF is the urokinase-type plasminogen activator, a serine protease that facilitates tumor progression and metastasis by controlling the synthesis of the extracellular matrix degrading plasmin. Stimulation of NIH 3T3 cells that were stably transfected with the human Met receptor (NIH 3T3-Methum) with HGF/SF induced a trans-activation of the urokinase promoter and urokinase secretion. Induction of the urokinase promoter by HGF/SF via the Met receptor was blocked by co-expression of a dominant-negative Grb2 and Sos1 expression construct. Further, the expression of the catalytically inactive mutants of Ha-Ras, RhoA, c-Raf, and Erk2 or addition of the Mek1-specific inhibitor PD 098059 abrogated the stimulation of the urokinase promoter by HGF/SF. A sequence residing between -2109 and -1870 base pairs (bp) was critical for stimulation of the urokinase gene by HGF/SF. Mobility shift assays with oligonucleotides spanning an AP-1 site at -1880 bp or a combined PEA3/AP-1 site at -1967 bp showed binding of nuclear factors from NIH 3T3-Methum cells. Expression of an expression plasmid that inhibits DNA binding of AP-1 proteins (A-Fos) abrogated inducible and basal activation of the urokinase promoter. Nuclear extract from unstimulated NIH 3T3-Methum cells contained more JunD and showed a stronger JunD supershift with the AP-1 oligonucleotides, compared with HGF/SF-stimulated cells. Consistent with the levels of JunD expression being functionally important for basal expression of the urokinase promoter, we found that overexpression of wild type JunD inhibited the induction of the urokinase promoter by HGF/SF. These data suggest that the induction of urokinase by HGF/SF is regulated by a Grb2/Sos1/Ha-Ras/c-Raf/RhoA/Mek1/Erk2/c-++ +Jun-dependent mitogen-activated protein kinase pathway.  相似文献   

7.
The nanos gene encodes a zinc-finger protein which is required for the migration and differentiation of primordial germ cells as well as for their fate maintenance. In this study, a 1913 bp nanos gene was cloned and characterized in silkworm (Bombyx mori). RT-PCR and Western blot analysis showed that the nanos was expressed in developing embryos and various silkworm larval tissues. The expression patterns of Nanos and Vasa in silkworm larval gonads were analyzed using immunohistochemistry. It was found that, in silkworm larval ovaries, the Nanos and Vasa proteins were expressed in oocytes. While in testes, high expression of Nanos and Vasa was detected in spermatogonia and relatively weaker expression was found in spermatocytes at latter stages.  相似文献   

8.
Cell migration involves the integrins, their extracellular matrix ligands, and pericellular proteolytic enzyme systems. We have studied the role of plasminogen activator inhibitor-1 (PAI-1) in cell migration, using human amnion WISH cells and human epidermoid carcinoma HEp-2 cells in an assay measuring migration from microcarrier beads and a modified Boyden-chamber assay. Active, but not latent or reactive center-cleaved, PAI-1 inhibited migration. A PAI-1 mutant without ability to inhibit plasminogen activation was as active as wild-type PAI-1 as a migration inhibitor, showing that inhibition of plasminogen activation was not involved. PAI-1 specifically interfered with integrin- and vitronectin-mediated migration: Migration onto vitronectin-coated but not onto fibronectin-coated surfaces was inhibited by PAI-1, a cyclic RGD peptide inhibited migration, and both cell lines expressed vitronectin-binding αv-integrins. In addition, active PAI-1, but not latent or reactive center-cleaved PAI-1, inhibited vitronectin binding to integrins in anin vitrobinding assay, without affecting binding of fibronectin. Monoclonal antibodies against the urokinase receptor, another vitronectin binding protein, did not affect cell migration in the beads assay, while some inhibitory effect was observed in the Boyden-chamber assay. We conclude that PAI-1, independently of its role as a proteinase inhibitor, inhibits cell migration by competing for vitronectin binding to integrins, while the interference of PAI-1 with binding of vitronectin to the urokinase receptor may play a secondary role. These data define a novel function for the serpin PAI-1, enabling it to regulate cell migration over vitronectin-rich extracellular matrix in the body.  相似文献   

9.
The migration of endothelial cells in response to various stimulating factors plays an essential role in angiogenesis. The p38 MAPK pathway has been implicated to play an important role in endothelial cell migration because inhibiting p38 MAPK activity down-regulates vascular endothelial growth factor (VEGF)-stimulated migration. Currently, the signaling components in the p38 MAPK activation pathway and especially the mechanisms responsible for p38 MAPK-regulated endothelial cell migration are not well understood. In the present study, we found that p38 MAPK activity is required for endothelial cell migration stimulated by both VEGF and nongrowth factor stimulants, sphingosine 1-phosphate and soluble vascular cell adhesion molecule. By using dominant negative forms of signaling components in the p38 MAPK pathway, we identified that a regulatory pathway consisting of MKK3-p38alpha/gamma-MAPK-activated protein kinase 2 participated in VEGF-stimulated migration. In further studies, we showed that a minimum of a 10-h treatment with SB203580 (specific p38 MAPK inhibitor) was needed to block VEGF-stimulated migration, suggesting an indirect role of p38 MAPK in this cellular event. Most interestingly, the occurrence of SB203580-induced migratory inhibition coincided with a reduction of urokinase plasminogen activator (uPA) expression. Furthermore, agents disrupting uPA and uPA receptor interaction abrogated VEGF-stimulated cell migration. These results suggest a possible association between cell migration and uPA expression. Indeed, VEGF-stimulated migration was not compromised by SB203580 in endothelial cells expressing the uPA transgene; however, VEGF-stimulated migration was inhibited by agents disrupting uPA-uPA receptor interaction. These results thus suggest that the p38 MAPK pathway participates in endothelial cell migration by regulating uPA expression.  相似文献   

10.
11.
The vasa gene is a reliable germline marker to study the origin and development of germ cells and gonads, although the gene product (mRNA or protein) varies between different species. However, there has been little study on vasa genes in holothuroids to date. Here we determined the expression characteristics of the Apostichopus japonicus vasa gene (Aj-vasa) during gametogenesis in the ovary and testis using in situ hybridization and immunohistochemistry. During oogenesis, the expression pattern of Aj-vasa coincided at the mRNA and protein levels. Intensive signals in oogonia decreased gradually with the development of oocytes. Interestingly, the pattern was different during spermatogenesis. The Aj-vasa mRNA level was the highest in spermatogonia, reduced in spermatocytes, low in spermatids and absent in spermatozoa, but the Aj-VASA protein was restricted to spermatogonia and early spermatocytes. These expression characteristics of Aj-vasa persisted in both male and female gonads throughout the reproductive cycle. Our findings show that Aj-vasa mRNA is a good marker for studying the origin and migration of germline cells; moreover, Aj-VASA is a useful tool to identify spermatogonia in A. japonicus. Our findings indicate that Aj-vasa is vital in the development and differentiation of germ cells.  相似文献   

12.
13.
We show here that the interaction between the urokinase-type plasminogen activator and its receptor, which plays a critical role in cell invasion, is regulated by heparan sulfate present on the cell surface and in the extracellular matrix. Heparan sulfate oligomers showing a composition close to the dimeric repeats of heparin (glucosamine-NSO(3)(6-OSO(3))-iduronic acid(2-OSO(3))) n = 5 and n > 5, where iduronic acid may alternate with glucuronic acid, exhibit affinity for urokinase plasminogen activator and confer specificity on urokinase/urokinase receptor interaction. Cell surface clearance of heparan sulfate reduces the affinity of such interaction with a parallel decrease of specific urokinase binding in the presence of an unaltered expression of receptor. Transfection of human urokinase plasminogen activator receptor in normal Chinese hamster ovary fibroblasts and in Chinese hamster ovary cells defective for the synthesis of sulfated glycosaminoglycans results in specific urokinase/receptor interaction only in nondefective cells. Heparan sulfate/urokinase and receptor/urokinase interactions exhibit similar K(d) values. We concluded that heparan sulfate functions as an adaptor molecule that confers specificity on urokinase/receptor binding.  相似文献   

14.
Osteopontin (OPN) is a secreted protein that is overexpressed in a number of human cancers, and has been associated with increased metastatic burden and poor prognosis in breast cancer patients. The OPN protein contains several conserved structural elements including heparin- and calcium-binding domains, a thrombin-cleavage site, a CD44 binding site, and two integrin-binding sites. Experimental studies have shown that the ability of OPN to interact with a diverse range of factors, including cell surface receptors (integrins, CD44), secreted proteases (matrix metalloproteinases, urokinase plasminogen activator), and growth factor/receptor pathways (TGFalpha/EGFR, HGF/Met) is central to its role in malignancy. These complex signaling interactions can result in changes in gene expression, which ultimately lead to alterations in cell properties involved in malignancy such as adhesion, migration, invasion, enhanced tumor cell survival, tumor angiogenesis, and metastasis. Therefore, OPN is not merely associated with cancer, but rather it plays a multi-faceted functional role via complex molecular cross-talk with other factors. This review will focus on the role of OPN in breast cancer, in particular on the malignancy-promoting aspects of OPN that may reveal opportunities for new approaches to the clinical management of breast cancer.  相似文献   

15.
The aim of this review is to summarize ways in which in vitro approaches have allowed us to investigate several aspects of gametogenesis in the male. In our laboratory, we have established both organ culture and cell co-culture methodologies and applied them to questions focused on cellular and molecular events important for development of primitive spermatogonia, or gonocytes, in testes of neonatal rats. We have described their postnatal reinitiation of mitosis and their migration to the basal lamina in anticipation of basal compartment formation and, through use of these in vitro systems, we have identified several mechanisms regulating these processes. These include matrix influence on mitosis and migration, adhesive mechanisms active between gonocytes and Sertoli cells, and involvement of the Kit receptor on germ cells and its ligand from Sertoli cells in supporting gonocyte migration, as described below.  相似文献   

16.
Stem cell factor (SCF) is hypothesized to play a critical role in the migration of melanocytes during embryogenesis because mutations in either the SCF gene, or its ligand, c-kit, result in defects in coat pigmentation in mice and in skin pigmentation in humans. In this report we directly show that SCF alters the adhesion and migration of human melanocytes to extracellular matrix (ECM) ligands and regulates integrin expression at the protein level. SCF decreased adhesion of neonatal and fetal cells to collagen IV, and increased attachment of fetal cells to laminin. Attachment of fetal cells to fibronectin was decreased, but was unchanged in neonatal cells. Flow cytometry analysis of neonatal melanocytes showed that SCF down-regulated the expression of the α2 receptor, and up-regulated the expression of the α3, α5 and β1 integrin receptors. SCF down-regulated expression of α2, α5 and β1 integrins by fetal melanocytes, and up-regulated expression of the αv and α3 integrin receptors. Analysis of melanocyte migration using time-lapse videomicroscopy showed that SCF significantly increased migration of neonatal, but not fetal, melanocytes on fibronectin (FN). We conclude that SCF regulates integrin expression at the protein level and that SCF has pleiotropic effects on melanocyte attachment and migration on ECM ligands. We suggest that this may be one mechanism by which SCF regulates melanocyte migration during development of the skin.  相似文献   

17.
Oxytocin either increases or inhibits cell growth in different cell subtypes. We tested here the effect of oxytocin on cell proliferation and migration of human dermal microvascular endothelial cells (HMEC) and tumor-associated endothelial cells purified from human breast carcinomas (B-TEC). Oxytocin receptors were expressed in both cell subtypes at mRNA and protein levels. Through oxytocin receptor, oxytocin (1 nmol/L-1 mumol/L) significantly increased cell proliferation and migration in both HMEC and B-TEC, and addition of a selective oxytocin antagonist fully reverted these effects. To verify whether a different expression of adhesion molecule-related genes could be responsible for the oxytocin-induced cell migration, untreated and treated cells were compared applying a microarray technique. In HMEC, oxytocin induced the overexpression of the matrix metalloproteinase (MMP)-17, cathepsin D, and integrin beta(6) genes. In B-TEC, oxytocin significantly switched on the gene profile of some MMP (MMP-11 and MMP-26) and of integrin beta(6). The up-regulation of the integrin beta(6) gene could be involved in the oxytocin-induced cell growth, because this subunit is known to determine activation of mitogen-activated protein kinase-extracellular signal-regulated kinase 2, which is involved in the oxytocin mitogenic effect. In B-TEC, oxytocin also increased the expression of caveolin-1 at gene and protein levels. Because oxytocin receptor localization within caveolin-1-enriched membrane domains is necessary for activation of the proliferative (instead of the inhibitory) response to oxytocin, its enhanced expression can be involved in the oxytocin-induced B-TEC growth as well. Altogether, these data indicate that oxytocin contributes to cell motility and growth in HMEC and B-TEC.  相似文献   

18.
We recently described a subset of peripheral CD14+CD34+ cells able to migrate across endothelial cell monolayers and differentiate into immunostimulatory dendritic cells (DC). In this paper we show that immature DC derived from CD14+CD34+ precursors are also capable of reverse transendothelial migration and extracellular matrix (ECM) invasion using the urokinase plasminogen activator receptor (uPAR). We found that these cells respond to macrophage-inflammatory protein (MIP)-1alpha, enhancing their ability to invade ECM and supporting the idea that immature DC are selectively recruited at the site of inflammation to expand the pool of APCs. Interestingly, MIP-1alpha was also capable of preventing the decreased matrix invasion observed by blocking uPAR, suggesting that the uPA/uPAR system and MIP-1alpha cooperate in driving immature DC migration through the subendothelial matrix. Upon exposure to maturating stimuli, such as TNF-alpha, CD14+CD34+-derived DC enhance their APC function and decrease the capacity of invading ECM; these changes are accompanied by altered expression and function of uPAR. Moreover, mature DC shift their sensitivity from MIP-1alpha to MIP-3beta, enhancing their transendothelial migration capability in response to the latter chemokine. Our data support the hypothesis that bloodborne DC can move through ECM toward the site of pathogen entry where they differentiate into fully mature APCs with their motility and function regulated by microenvironmental stimuli, including MIP-1alpha, MIP-3beta, and TNF-alpha.  相似文献   

19.
In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.  相似文献   

20.
uPAR     
Vascular endothelial growth factor (VEGF)-initiated angiogenesis requires both coordinated proteolytic degradation of extracellular matrix provided by the urokinase plasminogen activator/urokinase receptor (uPA/uPAR) system and regulation of cell-migration provided by integrin–matrix interaction. Previously we have shown that stimulation of pericellular proteolysis induced by VEGF occurs via the VEGF receptor-2 leading to redistribution of uPAR to focal adhesions at the leading edge of endothelial cells. In our recent work published in Cardiovascular Research, we investigated the mechanisms underlying the uPAR-dependent modulation of VEGF-induced endothelial migration. By applying a micropatterning technique we described that VEGF stimulation results in complex formation between uPAR and α5β1-integrin on the cell surface. The subsequent internalization of this complex, important for receptor redistribution, was demonstrated by flow-cytometry and immunohistochemistry. Targeting of the interaction site between uPAR and α5β1 impairs receptor internalization and leads to the inhibition of endothelial cell migration in vitro and in an angiogenesis model in vivo. This proof-of-principle that the interface of uPAR and α5β1-integrin may represent a promising site to therapeutically target tumor angiogenesis raises hope for the development of an anti-angiogenic approach that is limited to only the mobilizing effect of VEGF to endothelial cells, and does not interfere with the inarguably positive effect of VEGF as survival factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号