首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.  相似文献   

2.
The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described “heavy rafts” or non-raft membrane. Our data show that only Csk targeted into “classical” raft but not to “heavy raft” or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.  相似文献   

3.
Cholesterol and glycosphingolipid-enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl-beta-cyclodextrin (MbetaCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MbetaCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MbetaCD and by metabolic inhibition (compactin), and of treatment with alpha-CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MbetaCD treatment retarded the lateral diffusion of both raft and non-raft mutants, whereas similar cholesterol reduction (30-33%) by metabolic inhibition enhanced selectively the diffusion of the raft-associated mutants. Moreover, alpha-CD also inhibited the diffusion of raft and non-raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol-independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non-raft proteins.  相似文献   

4.
The tyrosine phosphatase Src homology 2-containing phosphatase 1 (SHP-1) is a key negative regulator of TCR-mediated signaling. Previous studies have shown that in T cells a fraction of SHP-1 constitutively localizes to membrane microdomains, commonly referred to as lipid rafts. Although this localization of SHP-1 is required for its functional regulation of T cell activation events, how SHP-1 is targeted to the lipid rafts was unclear. In this study, we identify a novel, six-amino acid, lipid raft-targeting motif within the C terminus of SHP-1 based on several biochemical and functional observations. First, mutations of this motif in the context of full-length SHP-1 result in the loss of lipid raft localization of SHP-1. Second, this motif alone restores raft localization when fused to a mutant of SHP-1 (SHP-1 DeltaC) that fails to localize to rafts. Third, a peptide encompassing the 6-mer motif directly binds to phospholipids whereas a mutation of this motif abolishes lipid binding. Fourth, whereas full-length SHP-1 potently inhibits TCR-induced tyrosine phosphorylation of specific proteins, expression of a SHP-1-carrying mutation within the 6-mer motif does not. Additionally, although SHP-1 DeltaC was functionally inactive, the addition of the 6-mer motif restored its functionality in inhibiting TCR-induced tyrosine phosphorylation. Finally, this 6-mer mediated targeting of SHP-1 lipid rafts was essential for the function of this phosphatase in regulating IL-2 production downstream of TCR. Taken together, these data define a novel 6-mer motif within SHP-1 that is necessary and sufficient for lipid raft localization and for the function of SHP-1 as a negative regulator of TCR signaling.  相似文献   

5.
In the present study, the lipid raft composition of a canine mastocytoma cell line (C2) was analyzed. Lipid rafts were well separated from non-raft plasma membranes using a detergent-free isolation technique. To study the influence of n-3 and n-6 polyunsaturated fatty acids (PUFA) on raft fatty acid composition in comparison to non-raft cell membrane, C2 were supplemented with one of the following: α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid or arachidonic acid. Enrichment of the culture medium with a specific PUFA resulted in an increase in the content of this fatty acid both in rafts and non-raft membranes. Contents of cholesterol and protein were found not to be affected by the changes in the fatty acid profiles. In conclusion, our data provide strong evidence that PUFA modulate lipid composition and physiological properties of membrane micro domains of mast cells which in turn may have effects on mast cell function.  相似文献   

6.
The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH(2) terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 mug/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.  相似文献   

7.
The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1) has previously been shown to be a negative regulator of signaling mediated via the TCR. A growing body of evidence indicates that the regulated localization of proteins within certain membrane subdomains, referred to as lipid rafts, is important for the successful transduction of signaling events downstream of the TCR. However, considerably less is known about the localization of negative regulators during these lipid raft-dependent signaling events. In this study we have investigated the subcellular localization of SHP-1 and its role in regulation of TCR-mediated signaling. Our studies demonstrate that in a murine T cell hybridoma as well as in primary murine thymocytes, a fraction of SHP-1 localizes to the lipid rafts, both basally and after TCR stimulation. Interestingly, although SHP-1 localized in the nonraft fractions is tyrosine phosphorylated, the SHP-1 isolated from the lipid rafts lacks the TCR-induced tyrosine phosphorylation, suggesting physical and/or functional differences between these two subpopulations. We identify a requirement for the C-terminal residues of SHP-1 in optimal localization to the lipid rafts. Although expression of SHP-1 that localizes to lipid rafts potently inhibits TCR-mediated early signaling events and IL-2 production, the expression of lipid raft-excluded SHP-1 mutants fails to elicit any of the inhibitory effects. Taken together these studies reveal a key role for lipid raft localization of SHP-1 in mediating the inhibitory effects on T cell signaling events.  相似文献   

8.
The alpha(1a)-adrenergic receptor (alpha(1a)AR) occupies intracellular and plasma membranes in both native and heterologous expression systems. Based on multiple independent lines of evidence, we demonstrate the alpha(1a)AR at the cell surface occupies membrane rafts but exits from rafts following stimulation. In non-detergent raft preparations, basal alpha(1a)AR is present in low density membrane rafts and colocalizes with its G protein effectors on density gradients. Raft disruption by cholesterol depletion with methyl-beta-cyclodextrin eliminates these light rafts. To confirm the presence of the alpha(1a)AR in plasma membrane rafts, fluorescence resonance energy transfer measurements were used to demonstrate colocalization of surface receptor and the raft marker, cholera toxin B. This colocalization was largely lost following alpha(1a)AR stimulation with phenylephrine. Similarly, receptor stimulation causes exit of the alpha(1a)AR from light rafts within 3-10 min in contrast to the G proteins, which largely remain in light rafts. Importantly, this delayed exit of the alpha(1a)AR suggests acute receptor signaling and desensitization occur entirely within rafts. Interestingly, both confocal analysis and measurement of surface alpha(1a)AR levels indicate modest receptor internalization during the 10 min following stimulation, suggesting most of the receptor has entered non-raft plasma membrane. Nevertheless, activation does increase the rate of receptor internalization as does disruption of rafts with methyl-beta-cyclodextrin, suggesting raft exit enables internalization. Confocal analysis of surface-labeled hemagglutinin-alpha(1a)AR reveals that basal and stimulated receptor occupies clathrin pits in fixed cells consistent with previous indirect evidence. The evidence presented here strongly suggests the alpha(1a)AR is a lipid raft protein under basal conditions and implies agonist-mediated signaling occurs from rafts.  相似文献   

9.
Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.  相似文献   

10.
11.
Components of caveolae and lipid rafts are characterized by their buoyancy after detergent extraction. Using flotations in density gradients, we now show that non-raft membrane molecules are also associated with detergent-insoluble, buoyant assemblies. When Triton X-100 cellular extracts were spun to equilibrium in Nycodenz, only components of classical rafts floated. In contrast, with the zwitterionic detergent CHAPS, non-raft residents such as calnexin and APP also buoyed. When CHAPS extracts were spun in non-equilibrium (velocity) conditions, some raft components rapidly exited the input fractions while other raft markers and non-raft molecules remained relatively immobile. This pointed to size heterogeneities of CHAPS-insoluble complexes. Combined velocity/equilibrium gradients broadly divided CHAPS-insoluble membrane complexes into three size categories, which all contained cholesterol and the glycosphingolipid GM1. Large complexes were enriched in caveolin and ESA. Medium size complexes were enriched in PrP, whereas small complexes contained non-raft proteins, PrP, and some ESA. While Alzheimer's APP was primarily confined to small assemblies, a portion of its glycosylated form did buoy with large complexes. Large CHAPS-insoluble complexes resemble, but are not equal to, classical rafts. These findings extend considerably the range of detergent-insoluble membranal domains.  相似文献   

12.
Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly concentrated in activated TCR-CD3 complexes and associated signaling proteins. We found that the raft transmembrane protein linker for activation of T cells (LAT), but not a palmitoylation-deficient non-raft LAT mutant, strongly accumulated in TCR-enriched immunoisolates in a tyrosine phosphorylation-dependent manner. In contrast, other raft-associated molecules, including protein tyrosine kinases Lck and Fyn, GM1, and cholesterol, were not highly concentrated in TCR-enriched plasma membrane immunoisolates. Many downstream signaling proteins coisolated with the TCR/LAT-enriched plasma membrane fragments, suggesting that LAT/TCR assemblies form a structural scaffold for TCR signal transduction proteins. Our results indicate that TCR signaling assemblies in plasma membrane subdomains, rather than generally concentrating raft-associated membrane proteins and lipids, form by a selective protein-mediated anchoring of the raft membrane protein LAT in vicinity of TCR.  相似文献   

13.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   

14.
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.  相似文献   

15.
One type of membrane microdomain, enriched in glycosphingolipids and cholesterol and referred to as lipid rafts, has been implicated in the generation of activating signals triggered by a variety of stimuli. Several laboratories, including ours, have recently demonstrated that the B cell receptor (BCR) inducibly localizes to the rafts upon activation and that functional lipid rafts are important for BCR-mediated "positive" signaling. In the later phases of the immune response, coligation of the BCR and the inhibitory receptor Fc gamma RIIB1 leads to potent inhibition of BCR-induced positive signaling through the recruitment of the inositol phosphatase SHIP to Fc gamma RIIB1. One potential model is that the Fc gamma RIIB1 itself might be excluded from the rafts basally and that destabilization of raft-dependent BCR signaling might be part of the mechanism for the Fc gamma RIIB1-mediated negative regulation. We tested this hypothesis and observed that preventing BCR raft localization is not the mechanism for this inhibition. Surprisingly, a fraction of Fc gamma RIIB1 is constitutively localized in the rafts and increases further after BCR + FcR coligation. SHIP is actively recruited to lipid rafts under negative stimulation conditions, and the majority of Fc gamma RIIB1-SHIP complexes localize to lipid rafts compared with non-raft regions of the plasma membrane. This suggested that this negative feedback loop is also initiated in the lipid rafts. Despite its basal localization to the rafts, Fc gamma RIIB1 did not become phosphorylated after BCR alone cross-linking and did not colocalize with the BCR that moves to rafts upon BCR engagement alone (positive signaling conditions), perhaps suggesting the existence of different subsets of rafts. Taken together, these data suggest that lipid rafts play a role in both the positive signaling via the BCR as well as the inhibitory signaling through Fc gamma RIIB1/SHIP.  相似文献   

16.
Endostatin, the C-terminal fragment of collagen XVIII, is a potent inhibitor of angiogenesis. Observations that endostatin inhibits endothelial cell migration and induces disassembly of the actin cytoskeleton provide putative cellular mechanisms for this effect. To understand the mechanisms of endostatin-induced intracellular signaling, we analyzed the association of recombinant endostatin with endothelial cell lipid rafts and the roles of its heparin- and integrin-binding properties in this interaction. We observed that a fraction of cell surface-bound endostatin partitioned in low density membrane raft fractions together with caveolin-1. Heparinase treatment of cells prevented the recruitment of endostatin to the lipid rafts but did not affect the association of endostatin with the non-raft fraction, whereas preincubation of endostatin with soluble alpha5beta1 integrin prevented the association of endostatin with the endothelial cell membrane. Endostatin treatment induced recruitment of alpha5beta1 integrin into the raft fraction via a heparan sulfate proteoglycan-dependent mechanism. Subsequently, through alpha5beta1 integrin, heparan sulfate, and lipid raft-mediated interactions, endostatin induced Src-dependent activation of p190RhoGAP with concomitant decrease in RhoA activity and disassembly of actin stress fibers and focal adhesions. These observations provide a cell biological mechanism, which plausibly explains the anti-angiogenic mechanisms of endostatin in vivo.  相似文献   

17.
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.  相似文献   

18.
The transmembrane glycoprotein SHPS-1 binds the protein tyrosine phosphatase SHP-2 and serves as its substrate. Although SHPS-1 has been implicated in growth factor- and cell adhesion-induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS-1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild-type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion-induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras-extracellular signal-regulated kinase signaling pathway and of c-Jun N-terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS-1 plays crucial roles in integrin-mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor-induced activation of mitogen-activated protein kinases.  相似文献   

19.
In this study we present data supporting that most CD38 is pre-assembled in a subset of Brij 98-resistant raft vesicles, which were stable at 37 degrees C, and have relatively high levels of Lck and the CD3-zeta subunit of T cell antigen receptor-CD3 complex in contrast with a Brij 98-soluble pool, where CD38 is associated with CD3-zeta, and Lck is not detected. Our data further indicate that following CD38 engagement, LAT and Lck are tyrosine phosphorylated exclusively in Brij 98-resistant rafts, and some key signaling components translocate into rafts (i.e. Sos and p85-phosphatidylinositol 3-kinase). Moreover, N-Ras results activated within rafts immediately upon CD38 ligation, whereas activated Erk was mainly found in soluble fractions with delayed kinetics respective to Ras activation. Furthermore, full phosphorylation of CD3-zeta and CD3-epsilon only occurs in rafts, whereas partial CD3-zeta tyrosine phosphorylation occurs exclusively in the soluble pool, which correlated with increased levels of c-Cbl tyrosine phosphorylation in the non-raft fractions. Taken together, these results suggest that, unlike the non-raft pool, CD38 in rafts is able to initiate and propagate several activating signaling pathways, possibly by facilitating critical associations within other raft subsets, for example, LAT rafts via its capacity to interact with Lck and CD3-zeta. Overall, these findings provide the first evidence that CD38 operates in two functionally distinct microdomains of the plasma membrane.  相似文献   

20.
Syndecan-4 is a heparan sulfate-carrying core protein that has been directly implicated in fibroblast growth factor 2 (FGF2) signaling. Recent studies have suggested that many signaling proteins localize to the raft compartment of the plasma cell membrane. To establish whether syndecan-4 is present in the raft compartment, we have studied the distribution of the core protein and an Fc receptor (FcR)-syndecan-4 chimera prior to and following clustering with FGF2 or antibodies. Whereas unclustered syndecan-4 was present predominantly in the non-raft membrane compartment, clustering induced extensive syndecan-4 redistribution to the rafts as demonstrated by the sucrose gradient centrifugation and life confocal microscopy. Although syndecan-4 and caveolin-1 moved in tandem, syndecan-4 was not present in caveolae, a major subset of raft compartments. We conclude that syndecan-4 clustering induces its redistribution to the non-caveolae raft compartment. This process may play an important role in syndecan-4-mediation of FGF2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号