首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human lipoprotein lipase (LPL), in a dose dependent fashion, significantly inhibited spontaneous human natural killer (NK) cells, but not lymphokine-activated killer (LAK) cytotoxic activity against bovine pulmonary endothelial cells. The effect was dependent on endothelial heparan sulfate (HS) sites, since heparitinase reverted it. When HS is added before LPL, NK and LAK cytotoxicity are markedly reduced. Endothelial and NK cell priming, with LPL and HS+LPL, significantly induced CD40 and CD154 expression, respectively. Furthermore, CD40 expression was inversely proportional to lytic units (R2 = 0.9, P < 0.001). Treating endothelial cells simultaneously with indomethacin, CD154 fusion protein, and Wortmanin prevented the CD40 effect increasing xenograft rejection. LPL and HS+LPL protect bovine endothelial cells from NK cytotoxicity by inducing CD40, CD154 expression, and secretion of soluble factors. The high, non-modulated expression of adhesion receptors and the low number of HS sites account for the minor effect of CD40 in LAK cytotoxic responses against bovine endothelial cells.  相似文献   

2.
A preparation of cerebral microvessels was used to demonstrate the presence of lipoprotein lipase and acid lipase activity in the microvasculature of rabbit brain. Microvessels, consisting predominantly of capillaries, small arterioles, and venules, were islated from rabbit brain. Homogenates were assayed for lipolytic activity using a glycerol-stabilized trioleoylglycerol-phospholipid emulsion as substrate. Lipoprotein lipase activity was characterized with this substrate by previously established criteria including an alkaline pH optimum, increased activity in the presence of heparin and heat-inactivated plasma, and reduced activity in the presence of NaCl and protamine sulfate. A different substrate, containing trioleoylglycerol incorporated into phospholipid vesicles, was used to reveal acid lipase activity that was not affected by heparin, plasma, NaCl, or protamine sulfate. Lipoprotein lipase did not show activity with the vesicle preparation as substrate. Intact microvessels, when incubated in the presence of heparin, release lipoprotein lipase into the incubation solution. In contrast, release of acid lipase activity from intact microvessels was not dependent on heparin. The data show the presence of both lipoprotein lipase and acid lipase in brain microvessels and suggest that lipoproteins are metabolized within the cerebral vasculature.  相似文献   

3.
Lipolytic activity measured at pH 8.6 in bovine corpora lutea exhibited classical properties of lipoprotein lipase (LPL) in terms of serum and heparin stimulation and NaCl inhibition. LPL activity was measured in 23 corpora lutea collected at different stages of the estrous cycle and early pregnancy. The LPL activity in cyclic corpora lutea (mumole FA released/hr/100 mg acetone powder) was low at Days 4-8 of the estrous cycle (3.1 +/- 1.5: mean +/- SE) and at Days 19-20 (1.6 +/- 0.6). However, high activity of the enzyme was found at Days 12-15 of the cycle (11.8 +/- 1.8); these concentrations were significantly (P less than 0.01) elevated over those found at Days 4-8 and 19-20. The enzyme activity began to decline at Days 16-18 of the estrous cycle (5.1 +/- 1.7). Low enzyme activity was found in the corpora lutea removed from two cows at Day 22 of pregnancy. Progesterone concentrations were measured in 16 of the 23 corpora lutea and a good correlation (r = 0.75, P less than 0.01) was found between lipoprotein lipase and progesterone concentrations of the tissue. The data suggest that LPL may be involved in controlling the transfer of fatty acids, including arachidonic, from plasma lipoproteins to luteal tissue.  相似文献   

4.
Lipoprotein lipase activity in neonatal-rat liver cell types.   总被引:5,自引:0,他引:5  
The lipoprotein lipase activity in the liver of neonatal (1 day old) rats was about 3 times that in the liver of adult rats. Perfusion of the neonatal liver with collagenase decreased the tissue-associated activity by 77%. When neonatal-rat liver cells were dispersed, hepatocyte-enriched (fraction I) and haemopoietic-cell-enriched (fraction II) populations were obtained. The lipoprotein lipase activity in fraction I was 7 times that in fraction II. On the basis of those activities and the proportion of both cell types in either fraction, it was estimated that hepatocytes contained most, if not all, the lipoprotein lipase activity detected in collagenase-perfused neonatal-rat livers. From those calculations it was also concluded that haemopoietic cells did not contain lipoprotein lipase activity. When the hepatocyte-enriched cell population was incubated at 25 degrees C for up to 3 h, a slow but progressive release of enzyme activity to the incubation medium was found. However, the total activity (cells + medium) did not significantly change through the incubation period. Cycloheximide produced a time-dependent decrease in the cell-associated activity. Heparin increased the amount of lipoprotein lipase activity released to the medium. Because the cell-associated activity was unchanged, heparin also produced a time-dependent increase in the total activity. In those cells incubated with heparin, cycloheximide did not affect the initial release of lipoprotein lipase activity to the medium, but blocked further release. The cell-associated activity was also decreased by the presence of cycloheximide in those cells. It is concluded that neonatal-rat hepatocytes synthesize active lipoprotein lipase.  相似文献   

5.
P W Connelly 《CMAJ》1990,143(4):295
  相似文献   

6.
7.
Lipoprotein particles of the size range of very low density lipoproteins in smooth endoplasmic reticulum, peripheral elements of the Golgi apparatus, and secretory vesicles of the immature Golgi apparatus face are 55 to 80 nm in diameter. Particles in mature secretory vesicles are smaller (45 nm). Concomitant with the change in particle size, the lumina of mature vesicles increase in electron density. A technique to fractionate immature and mature secretory vesicles was based on precipitation of a cupric-ferrocyanide complex (Hatchett's brown) through the action of a NADH-ferricyanide oxido-reductase resistant to glutaraldehyde which is characteristic of the membranes of mature secretory vesicles and of the plasma membrane of liver. Mature secretory vesicle fractions so isolated were enriched in cholesterol and depleted in triglycerides relative to immature vesicles on a phospholipid basis. Lipase activity was present in secretory vesicle fractions of the Golgi apparatus as shown by biochemical analysis and by cytochemistry. Cytochemical studies showed lipase to be present in both mature and immature vesicles but most evident in immature vesicles. The findings suggest that some very low density lipoprotein particles are converted to particles of smaller diameter during transit through Golgi apparatus. A lipase-mediated hydrolysis of triglycerides may relate to the transformation.  相似文献   

8.
The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.  相似文献   

9.
10.
Lipoprotein lipase activity in liver of the rat fetus   总被引:2,自引:0,他引:2  
Lipoprotein lipase activity was determined in tissue from pregnant and post-partum rats and virgin adult controls and in liver from fetuses and pups. A glycerol-based emulsion of tri-(1-14C)-oleoyl-glycerol was used as substrate. According to the inhibitory characteristics in the presence of protamine and NaCl, the measured activity corresponded to the extrahepatic lipoprotein lipase of the adults. Compared to control values, the lipoprotein lipase activity was reduced in the mother's adipose tissue in late gestation and during the first days after parturition while it did not change in heart. Liver activity was negligible in mothers and controls while in the fetus it increased until the time of birth. The presence of this enzyme may allow the fetus liver to remove circulating triglycerides and to store them in preparation for early extrauterine life.  相似文献   

11.
Lipoprotein lipase activity in guinea pig and rat milk   总被引:1,自引:0,他引:1  
  相似文献   

12.
A partially-purified diacylglycerol (DG) lipase from bovine aorta has been characterized with respect to the effects of lipid metabolites and two lipase inhibitors, phenylboronic acid and tetrahydrolipstatin (THL). DG lipase activity was determined by the hydrolysis of the sn-1 position of 1-[1-4C]palmitoyl-2-oleoyl-sn-glycerol. The products of the lipase reaction, 2-monoacylglycerol (2-monoolein) and non-esterified fatty acids (oleate, arachidonate) produced a concentration-dependent (20–200 μM) inhibition of DG lipase activity. Oleoyl-CoA and dioleoylphosphatidic acid also inhibited aortic DG lipase activity, but lysophosphatidylcholine had little or no effect. The inhibition of aortic DG lipase by phenylboronic acid was competitive, with a Ki of approx. 4 mM. THL was a very potent inhibitor of aortic DG lipase; the concentration required for inhibition to 50% of control was 2–6 nM. THL was a very potent inhibitor of concentration of substrate in the assay was increased. Attempts to identify the aortic DG lipase by covalent-labelling with [14C]THL were unsuccessful. Immunoblotting experiments revealed that hormone-sensitive triacylglycerol lipase (HSL) could not be detected in bovine aorta.  相似文献   

13.
The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice.  相似文献   

14.
脂蛋白脂酶与肥胖   总被引:1,自引:0,他引:1  
脂蛋白脂酶(lipoprotein lipase,LPL)是甘油三酯分解代谢的限速酶,与肥胖发生联系密切.综述了LPL蛋白的分子结构特点、分泌方式,及其参与的与肥胖发生有关的脂肪细胞分化、脂质沉积、脂代谢等过程.  相似文献   

15.
The low triacylglycerol concentration in inguinal tissue of newborn rats did not change during the first 6h after birth, despite the relatively high lipoprotein lipase activity in the tissue. Subsequently triacylglycerol concentration and enzyme activity rose in parallel. The results show that lipoprotein lipase activity was present in the tissue before fat accumulation.  相似文献   

16.
Type 1 diabetes mellitus reduces lipoprotein lipase (LPL) activity in the heart. The diabetic phenotype of decreased LPL activity in freshly isolated cardiomyocytes persisted after overnight culture (16 h). Total cellular LPL activity was 311+/-56 nmol oleate released x h(-1) x mg(-1) cell protein in diabetic cultured cardiomyocytes compared with 661+/-81 nmol oleate released x h(-1) x mg(-1) cell protein for control cultured cells. Diabetes also resulted in lower heparin-releasable (HR) LPL activity compared with control cells (111+/-25 vs. 432+/-63 nmol x h(-1) x mg(-1) cell protein). In kinetic experiments, the reduction in total cellular LPL and HR-LPL activities in cultured cells from diabetic hearts was due to a decrease in maximal velocity, with no change in apparent Km for substrate (triolein). LPL activity in primary cultures of cardiomyocytes from control rats is stimulated by the combination of insulin (Ins) and dexamethasone (Dex). Overnight treatment of cultured cardiomyocytes from diabetic rats with Ins+Dex elicited an 84% increase in cellular LPL activity (to 572+/-65 nmol x h(-1) x mg(-1) cell protein) and a 194% increase in HR-LPL activity (to 326+/-46 nmol x h(-1) x mg(-1) cell protein). This stimulation occurred at subnanomolar concentrations of the hormones, but neither hormone was effective alone. The amount of immunoreactive LPL protein mass in cultured cardiomyocytes from diabetic hearts was unchanged by Ins+Dex treatment. Addition of oleic acid (60 microM) to the overnight culture medium inhibited the already reduced HR-LPL activity in diabetic cultured cells by 73% (to 30+/-4 nmol x h(-1) x mg(-1) cell protein). The presence of oleic acid also reduced hormone-stimulated HR-LPL activity. Increasing the glucose concentration in the culture medium to 26 mM had no effect on total cellular LPL or HR-LPL activities.  相似文献   

17.
The effect of hormone administration on the activity of lipoprotein lipase in the lung was studied in the rat. The following hormones were administered: dexamethasone, L-thyroxine, estradiol-17beta and progesterone. In addition, lung lipoprotein lipase activity was studied in diabetic and lactating rats. Lipoprotein lipase activity was measured in dried, defatted preparations of rat lung using double labeled ([14C]palmitate, [3H]glycerol) chylomicron triacylglycerol as substrate. Dexamethasone administration caused a rise of 70% in the level of activity of lipoprotein lipase in acetone powders of lung and a 100% increase in the amount of enzyme released during heparin infusion into isolated, perfused lungs. Enzyme activity was higher in lungs of females than of male rats; however; the level of activity was unaffected by estrogen or progesterone administration to either male or ovariectomized rats. Diabetes, hyperthyroidism or lactation did not change lipoprotein lipase activity in the lung. The constant presence of lipoprotein lipase activity in the lung suggests that this organ is able to maintain a steady supply of triacylglycerol-fatty acids under a variety of physiological and pathological conditions. Stimulation of enzyme activity by dexamethasone could lead to increased uptake of triacylglycerol-fatty acids by the lung and may thus be a contributing factor to corticosteroid-induced enhanced surfactant synthesis.  相似文献   

18.
Lipoprotein lipase in the physiological system   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Lipoproteinlipase (LPL) and lecithin-cholesterol-acyltransferase (LCAT) activity was studied in rats in conditions of drug-induced (Clofibrat, cholestyramine, aethinyloestradiol) changes in lipid metabolism. Comparison of enzyme activity in three models of changed lipoprotein metabolism has revealed that the only model used (with aethinyloestradiol) leads to the uniform changes (decrease) in LPA and LCAT. Clofibrat increased LPL activity, with LCAT activity remaining unaffected. Cholestyramine caused no changes in LPL activity, but increased LCAT activity. The results obtained suggest that synergism in LPL and LCAT activity changes is registered only when lipolysis of triglyceride-saturated lipoproteins leads to the increase in the number of particles, similar in their structure and properties to high density lipoproteins, the basic LCAT structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号