首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《The Journal of cell biology》1993,121(6):1423-1432
Attachment of circulating tumor cells to endothelial cell adhesion molecules restricted to select vascular compartments is thought to be responsible for site-specific metastasis. Lung-metastatic rat R3230AC- MET breast and RPC-2 prostate carcinoma cells bound outside-out endothelial cell membrane vesicles, prepared by perfusion of the rat lung vasculature with a low-strength formaldehyde solution, in significantly higher numbers than their nonmetastatic counterparts R3230AC-LR and RPC-LR. In contrast, vesicles derived from the vasculature of a nonmetastasized organ (e.g., hind leg muscle) showed no binding preference for either of the four tumor cell lines. Lung- derived endothelial vesicles were used here to generate mAbs against lung endothelial cell adhesion molecules. The first group of mice were actively immunized against lung endothelial vesicles, whereas the second group was injected with syngeneic mouse antiserum against leg endothelial vesicles before active immunization with lung endothelial vesicles. 17 hybridoma supernatants obtained from the two fusions bound lung vesicles with at least a 10-fold higher affinity than leg vesicles. Seven (four obtained by a passive/active immunization protocol) stained rat capillary endothelia. One mAb, mAb 8.6A3, inhibited specific adhesion of lung-derived vesicles to lung-metastatic breast and prostate carcinoma cells. Purification of the antigen (endothelial cell adhesion molecule) from rat lung extracts revealed a protein with a 110-kD mol wt. NH2-terminal sequencing established identity with dipeptidyl peptidase IV which had been reported to serve as a fibronectin-binding protein. These results indicate that vesicles obtained from in situ perfused organs are a convenient immunogen for the production of antibodies to compartment-specific endothelial cell surface molecules, and reinforce the concept that endothelial cell surface components are selectively recognized by circulating cancer cells during metastasis formation.  相似文献   

2.
Cell surface molecules play an important role in cellular communication, migration, and adherence. Here, we show the effect of organ-derived biomatrices on endothelial cell surface glycosylation. Five different lectins (with and without neuraminidase treatment) have been used as probes in an enzyme-linked lectin assay to quantitatively detect glycoconjugates on endothelial cells (BAEC) grown on tissue culture plastic or biomatrices isolated from bovine lung, liver, and kidney. BAEC generally exhibit strong binding of concanavalin A (Con A), Ricinus communis agglutinin I (RCA-I), wheat germ agglutinin (WGA), and soybean agglutinin, and peanut agglutinin after neuraminidase pretreatment of cells (Neu-SBA and Neu-PNA), while SBA and PNA consistently bind weakly to BAEC. BAEC grown on organ-derived biomatrices exhibit significantly altered binding intensities of Con A, RCA-I, WGA, and Neu-PNA: BAEC cultured on lung- or kidney-derived biomatrices express significantly stronger binding affinities for Con A and RCA-I than BAEC grown on liver-derived biomatrix or tissue culture plastic. In contrast, BAEC binding of WGA and PNA (after treatment of cells with neuraminidase) is significantly reduced when BAEC are grown on liver- or kidney-derived biomatrix. Quantitative lectin immunogold electron microscopy reveals consistently stronger lectin binding over nuclear regions compared to junctional regions between neighboring cells. These results indicate that extracellular matrix components regulate endothelial cell surface glycoconjugate expression, which determines cellular functions, e.g., preferential adhesion of lymphocytes or metastatic tumor cells.  相似文献   

3.
Two kinds of membrane (luminal and abluminal membrane domains) fractions have been isolated from bovine aortic endothelial cells by fractionation of whole cell homogenate on discontinuous sucrose density gradients. The luminal membrane domain was enriched 12-16-fold for angiotensin-converting enzyme activity and 8-10-fold in alkaline phosphatase activity. The abluminal membrane domain displayed an enrichment of 8-fold in (Na+ + K+)-ATPase activity. Both of the membrane domains were minimally contaminated with mitochondria, microsomes and Golgi bodies, as assessed by their corresponding marker enzyme activities. 125I-labeling of endothelial cell monolayers by the Enzymo-Bead lactoperoxidase-catalyzed iodination procedure, followed by isolation of membranes, revealed that the radioactivity was predominantly associated with membranes enriched in angiotensin-converting enzyme activity, corresponding to the luminal membrane domain. However, when cells were radioiodinated in suspension culture, radioactivity was found equally associated in both the luminal and abluminal membrane fractions. Electron microscopy of freeze-fractured and sectioned material showed both luminal and abluminal membrane domains to be in the form of vesicles varying in size from 100 to 400 nm in diameter. To characterize the separation of endothelial cell membrane domains, we have attempted to prepare monoclonal antibodies specific for endothelial cells. Several clones were obtained, producing antibodies which bound to endothelial cells of arterial, venous and capillary origin. Two antibodies of these clones, XIVC6 and XVD2, were studied in more detail. In the ELISA assay, these antibodies reacted with bovine vascular endothelial cells, but not with human umbilical cord endothelial cells, nor with bovine corneal endothelial cells, smooth muscle cells or fibroblasts. Both of these antibodies are directed against an antigen of approximately 130 kDa, under reducing and non-reducing conditions, as assayed by the immunoprecipitation method. Western blot analysis of luminal and abluminal membrane fractions revealed that only MAb XVD2 reacted with an antigen, indicating that the antibody XIVC6 is directed against an epitope which is denatured by SDS. Moreover, MAb XVD2 preferentially reacted with the luminal membrane compared to the abluminal membrane domain of the endothelial cell. These monoclonal antibodies do not react with platelet membrane proteins, indicating that this 130 kDa membrane antigen is not common to both endothelial cells and platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Extracts of isolated microvascular endothelial cells (MEC) and cultured bovine aortic endothelial cells (BAEC) were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), electrotransfer and incubation with albumin either radioiodinated or adsorbed to 5-nm gold particles. Both ligands reacted exclusively with two peptides of 18 and 31 kDa. To the 18 kDa peptide (excised from preparative SDS-PAGE), an antibody was raised in rabbits and purified by affinity on 18 kDa obtained from two-dimensional gel electrophoresis and immobilized on nitrocellulose paper. The specificity of the anti-18 kDa was assessed by immunoblotting and immunoprecipitation of endothelial cell extracts. To check whether the 18 kDa peptide is exposed on the endothelial cell surface and/or its components (uncoated pits, open plasmalemmal vesicles), the apical membrane of BAEC was radioiodinated, the solubilized proteins incubated with the anti-18 kDa, and the immune complexes formed were precipitated with protein A-Sepharose CL-4B. The ensuing SDS-PAGE and autoradiography revealed that from all radioiodinatable surface proteins, the 18 kDa was the only polypeptide immunoprecipitated by the anti-18 kDa antibody. To localize the 18 kDa peptide, we applied indirect immunofluorescence technique on cultured MEC and BAEC and immunoelectron microscopy (EM) on ultrathin cryosections of mouse heart. Nonpermeabilized whole MEC and BAEC incubated with anti-18 kDa followed by rhodamine-conjugated second antibody showed a relatively intense surface fluorescence often appearing as small dots. At the EM level, heart ultrathin cryosections exposed anti-18 kDa followed by gold-conjugated second antibody revealed that 18 kDa was primarily associated with the membrane of plasmalemmal vesicles of capillary endothelia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Affinity chromatography and immunolocalization techniques were used to investigate the mechanism(s) by which endothelial cells interact with the basement membrane component laminin. Bovine aortic endothelial cells (BAEC) membranes were solubilized and incubated with a laminin-Sepharose affinity column. SDS-PAGE analysis of the eluted proteins identified a 69-kD band as the major binding protein, along with minor components migrating at 125, 110, 92, 85, 75, 55, and 30 kD. Polyclonal antibodies directed against a peptide sequence of the 69-kD laminin-binding protein isolated from human tumor cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely, with a granular perinuclear distribution and in linear arrays throughout the cell. During migration a redistribution from diffuse to predominanately linear arrays that co-distributed with actin microfilaments was noted in double-label experiments. The 69-kD laminin-binding protein colocalized with actin filaments in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells actively synthesizing matrix. Endothelial cells express a 69-kD laminin-binding protein that is membrane associated and appears to colocalize with actin microfilaments. The topological distribution of 69 kD and its cytoskeletal associations can be modulated by the cell during cell migration and growth suggesting that 69 kD may be a candidate for a membrane protein involved in signal transduction from extracellular matrix to cell via cytoskeletal connections.  相似文献   

6.
Basic Fibroblast Growth Factor (FGF-2) is a growth and survival factor and represents one of the most potent differentiation agents of vascular system. In the present study we describe that adenoviral oncoprotein E1A regulates FGF-2 production and determines the acquisition of a pro-angiogenic phenotype in primary bovine aortic endothelial cells (BAEC). Following their transfection, wild type E1A proteins 12S and 13S (wtE1A) stimulated BAEC to differentiate on reconstituted basement membrane matrix (Matrigel). This outcome was paralleled by invasion and migration enhancement in wtE1A-transfected cells. This stimulating effect was absent with the E1A mutant dl646N. Accordingly, zymography and RT - PCR analyses showed that matrix metalloproteinase-9 protein- and mRNA-levels increased following wtE1A transfection. Interestingly, wtE1A-transfected BAEC showed FGF-2 mRNA- and protein-levels higher than controls. Further, FGF-2 neutralization reduced the amount of MMP-9 released in the supernatant of E1A-transfected cells and strongly inhibited BAEC differentiation, thus suggesting that wtE1A activates BAEC by a mechanism, at least partially, dependent on a FGF-2 autocrine/paracrine loop.  相似文献   

7.
The bovine aortic endothelial cell (BAEC) cytoskeleton is a complex structure modulated by many stimuli including release from contact inhibition and various components of the extracellular matrix (ECM). Transduction of information from the ECM to the cell nucleus proceeds via several complex pathways including the cytoskeleton. We have demonstrated the presence of an immunoreactive isoform of the human erythrocyte cytoskeletal protein band 4.1 (4.1) in BAEC. BAEC 4.1 is similar in molecular weight to the erythroid protein by immunoblot analyses and produces a similar pattern of cysteine specific cleavage products consistent with a cluster of cysteine residues previously described in the erythroid molecule. We have also examined the effects of defined ECM proteins on the distributions of cultured BAEC 4.1 and actin filaments (AF) at confluency and following release from contact inhibition. The distribution of 4.1 in BAEC on a plasma fibronectin substrate is complex, having partial codistribution with cytoplasmic AF and a unique perinuclear staining. In contrast, on a collagen type I/III substrate, 4.1 is localized, in part, to peripheral areas of cell-cell contact distinct from the dense peripheral band staining of AF. During migration on this substrate, 4.1 had a filamentous distribution having partial codistribution with AF. Indirect immunofluorescence staining of cross-sections of bovine calf aortae revealed a cortical staining pattern in the aortic endothelial cells with staining noted on the luminal and basolateral aspects of the cells. These data suggest that, in endothelial cells, protein 4.1 is a cortical membrane protein which may function to link actin filaments to other skeletal proteins such as spectrin. These findings also suggest an active role for protein 4.1 in cytoskeletal reorganization events which can occur in response to external stimuli, such as the extracellular matrix or contact with other cells.  相似文献   

8.
蛋白凝胶基质的制备与基质内的血管生成反应   总被引:1,自引:0,他引:1  
利用肝素亲和层析从血清中提取玻璃粘连蛋白(vitronectin),以硫酸铵沉淀法从血浆中粗提含纤维蛋白原的复合蛋白质组分,向血浆蛋白、胎牛血清和DMEM组成的复合成分中加入凝血酶,制成蛋白质凝胶.观察血管内皮细胞在此基质上或在基质中的生长及在碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)的诱导下形成的血管样结构.结果表明血管内皮细胞可粘附在此凝胶基质表面正常生长,在bFGF的诱导下,内皮细胞向胶内迁移、生长并形成管状结构,多个管状结构连接、融合形成毛细血管网状结构.  相似文献   

9.
Greif DM  Kou R  Michel T 《Biochemistry》2002,41(52):15845-15853
The endothelial isoform of nitric oxide synthase (eNOS) is a calcium/calmodulin-dependent enzyme that catalyzes the synthesis of nitric oxide, a key mediator of vascular homeostasis. eNOS undergoes a variety of posttranslational modifications, including phosphorylation on at least three residues: serines 116 and 1179 and threonine 497. Although the agonist-modulated protein kinase pathways that lead to eNOS phosphorylation have been studied in detail, the signaling pathways governing eNOS dephosphorylation remain less well characterized. The present study identifies protein phosphatase 2A (PP2A) as a key determinant of eNOS dephosphorylation and enzyme activity. We transfected bovine aortic endothelial cells (BAEC) with epitope-tagged cDNAs encoding wild-type eNOS or a series of phosphorylation-deficient eNOS mutants, immunoprecipitated [(32)P(i)] biosynthetically labeled recombinant proteins using antibodies directed against the epitope tag and treated the [(32)P(i)]-phosphorylated eNOS with protein phosphatases. We found that PP2A dephosphorylates eNOS residues threonine 497 and serine 1179 but not serine 116 and that an eNOS mutant lacking these three established phosphorylation sites is robustly labeled when expressed in BAEC and is dephosphorylated by PP2A. An inhibitor of PP2A increases eNOS enzymatic activity and augments overall levels of eNOS phosphorylation, specifically increasing phosphorylation of serines 116 and 1179. When transfected into BAEC or COS-7 cells, a "phospho-mimetic" eNOS mutant in which threonine 497 is changed to aspartate shows attenuated phosphorylation at serine 1179 as well as reduced enzyme activity in COS-7 cells. Our results indicate that regulation of eNOS dephosphorylation may be a key point for control of nitric oxide-dependent signaling pathways in vascular endothelial cells.  相似文献   

10.
Liu D  Dillon JS 《Steroids》2004,69(4):279-289
Dehydroepiandrosterone (DHEA) improves vascular function, but the mechanism of this effect is unclear. Since nitric oxide (NO) regulates vascular function, we hypothesized that DHEA affects the vasculature by increasing endothelial NO production. Physiological concentrations of DHEA stimulated NO release from intact bovine aortic endothelial cells (BAEC) within 5min. This effect was mediated by activation of endothelial nitric oxide synthase (eNOS) in BAEC and human umbilical vein endothelial cells (HUVEC). Dehydroepiandrosterone increased cyclic GMP (cGMP) levels in BAEC, consistent with its effect on NO production. Albumin-conjugated DHEA also stimulated NO release, suggesting that DHEA stimulates eNOS by a plasma membrane-initiated signal. Tamoxifen blocked estrogen-stimulated NO release from BAEC, but did not inhibit the DHEA effect. Pertussis toxin abolished the acute effect of DHEA on NO release. Dehydroepiandrosterone had no effect on intracellular calcium fluxes. However, inhibition of tyrosine kinases or the mitogen-activated protein (MAP) kinase kinase (MEK) blocked NO release and cGMP production in response to DHEA. These findings demonstrate that physiological concentrations of DHEA acutely increase NO release from intact vascular endothelial cells, by a plasma membrane-initiated mechanism. This action of DHEA is mediated by a steroid-specific, G-protein coupled receptor, which activates eNOS in both bovine and human cells. The release of NO is independent of intracellular calcium mobilization, but depends on tyrosine- and MAP kinases. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for DHEA.  相似文献   

11.
Cultured capillary endothelial cells, derived from bovine brain, and maintained on a plastic substratum synthesized predominantly interstitial collagens of which approximately 75 per cent were secreted into the medium. When grown on a native hydrated collagen type I gel, although no marked alteration in the 'collagen synthetic pattern' was observed, the overall level of collagen synthesis was increased by approximately 100 per cent. More dramatic, however, was the alteration in the distribution of these molecules between medium and cell layer. Interstitial collagens produced by cells grown on collagen gels were almost exclusively associated with the cell layer or collagenous gel. These studies, thus, demonstrate that an extracellular matrix may exert a considerable influence on the cellular synthetic activities and possibly cellular polarity of capillary endothelial cells.  相似文献   

12.
The use of protein hydroxy ethylmethacrylate (HEMA) hydrogels to control cell morphology and growth, as well as the synthesis of extracellular matrix components, is described in this communication. HEMA hydrogels prepared with collagen support growth of embryonic lung fibroblasts (IMR-90), as well as bovine aortic and pulmonary artery endothelial cells at a level comparable to the respective cells grown on tissue culture surfaces. On the other hand, HEMA hydrogels prepared with solubilized elastin inhibit the fibroblast growth and prevent both types of endothelial cell cultures from achieving their normal morphology. These morphologically altered endothelial cells resume a normal cobblestone-like appearance when subcultivated from the elastin-HEMA hydrogels to tissue culture plastic. When pulsed with [14C]proline, the procollagens synthesized by the endothelial cells on the different surfaces vary, as shown by immunoprecipitation and polyacrylamide gel electrophoresis. On the standard tissue culture plastic, the confluent cells produce mainly type III procollagen in the medium, whereas those endothelial cells grown on collagen and elastin-HEMA hydrogels synthesize primarily type I procollagen (much like sprouting cells on tissue culture plastic), regardless of their morphology.  相似文献   

13.
In this study, we investigated the effect of the extracellular matrix (ECM) secreted by vascular cells on proteoglycan (PG) synthesis by vascular smooth muscle cells in culture. PG synthesis of human aortic smooth muscle cells plated on plastic or the matrices derived from vascular endothelial cells, vascular smooth muscle cells, or THP-1 macrophages was characterized. Smooth muscle cell and macrophage matrices increased both secreted and cellular smooth muscle cells PG production by 2.5-fold to 3.9-fold, respectively, over plastic and endothelial cell matrix. Macrophage matrix was more potent than smooth muscle cell matrix in this regard. Selective enzymatic removal of chondroitin sulfates, collagen, and elastin from smooth muscle cell matrix enhanced the stimulation of PG synthesis, as did the removal of chondroitin sulfates from macrophage matrix. PG turnover rates were similar for smooth muscle cells plated on the three matrices. The newly synthesized PG from cultures plated on smooth muscle cell-, and macrophage-derived matrices had greater charge density, larger molecular size, and longer glycosaminoglycan chains than those from endothelial cell matrix cultures. These data show that the ECM plays a major role in modulating vascular smooth muscle cell PG metabolism in vitro.  相似文献   

14.
Sialic acids, occupying a terminal position in cell surface glycoconjugates, are major contributors to the net negative charge of the vascular endothelial cell surface. As integral membrane glycoproteins, LDL receptors also bear terminal sialic acid residues. Pretreatment of near-confluent, cultured bovine aortic endothelial cells (BAEC) with neuraminidase (50 mU/ml, 30 min, 37 degrees C) stimulated a significant increase in receptor-mediated 125I-LDL internalization and degradation relative to PBS-treated control cells. Binding studies at 4 degrees C revealed an increased affinity of LDL receptor sites on neuraminidase-treated cells compared to control BAEC (6.9 vs. 16.2 nM/10(6) BAEC) without a change in receptor site number. This enhanced LDL endocytosis in neuraminidase-treated cells was dependent upon the enzymatic activity of the neuraminidase and the removal of sialic acid from the cell surface. Furthermore, enhanced endocytosis due to enzymatic alteration of the 125I-LDL molecules was excluded. In contrast to BAEC, neuraminidase pretreatment of LDL receptor-upregulated cultured normal human fibroblasts resulted in an inhibition of 125I-LDL binding, internalization, and degradation. Specifically, a significant inhibition in 125I-LDL internalization was observed at 1 hr after neuraminidase treatment, which was associated with a decrease in the number of cell surface LDL receptor sites. Like BAEC, neuraminidase pretreatment of human umbilical vein endothelial cells resulted in enhanced receptor-mediated 125I-LDL endocytosis. These results indicate that sialic acid associated with either adjacent endothelial cell surface molecules or the endothelial LDL receptor itself may modulate LDL receptor-mediated endocytosis and suggest that this regulatory mechanism may be of particular importance to endothelial cells.  相似文献   

15.
Components of the extracellular matrix have been shown to modulate the interaction of endothelial cells with their microenvironment. Here we report that thrombospondin (TSP), an extracellular matrix component, induces adhesion and spreading of murine lung capillary (LE-II) and bovine aortic (BAEC) endothelial cells. This TSP-induced spreading was inhibited by heparin and fucoidan, known to bind the amino-terminal globular domain of the molecule. In addition, endothelial cells were induced to migrate by a gradient of soluble TSP (chemotaxis). The chemotactic response was inhibited by heparin and fucoidan, as well as by the mAb A2.5, which also binds to the amino-terminal domain. These data are in agreement with our previous observation that the TSP aminoterminal heparin binding region is responsible for the induction of tumor cell spreading and chemotactic motility. The inhibition of chemotaxis and spreading by antibodies against the beta 3 but not the beta 1 chain of the integrin receptor points to a role for the integrins in the interaction of endothelial cells with TSP. We also found that TSP modulates endothelial cell growth. When added to quiescent LE-II cells, it inhibited the mitogenic effects of serum and the angiogenic factor bFGF, in a dose-dependent manner. The inhibition of DNA synthesis detected in the mitogenic assay resulted in a true inhibition of BAEC and LE-II cell growth, as assessed by proliferation assay. This work indicates that TSP affects endothelial cell adhesion, spreading, motility and growth. TSP, therefore, has the potential to modulate the angiogenic process.  相似文献   

16.
Large radiation doses cause postradiation vascular hyperpermeability by disrupting endothelia. The cumulative sequences of small doses (fractionated radiotherapy) standard in clinical practice cause it too, but not by endothelial disruption: the mechanisms are unknown. In this study, correlated fluorescent and ultrastructural localisation of a tracer revealed the architecture, fine structure and function of microvessels in mouse AT17 tumours, before and after 42 Gy fractionated radiation. Before irradiation, tumour vascular permeability lay in the normophysiological range defined by the gut and cerebral cortex. A double barrier regulated permeability: vesicular transport through the endothelial wall required approximately 2 h and then the basement membrane charge barrier trapped tracer for 2 h longer. Irradiation abolished the double barrier: tracer passed instantly through both endothelial wall and underlying basement membrane, forming diffusion haloes around microvessels within 2-5 min. Structurally, irradiated tumour microvessels were lined by a continuous and vital endothelium with closed interendothelial junctions; endothelial basement membranes were intact, though loosened. Irradiated endothelia exhibited extremely active membrane motility and intracellular vesicle trafficking. Radiation treatment raised vascular permeability by enhancing transendothelial transcytosis, and by altering the passive filter properties of the subendothelial basement membrane. This type of vascular hyperpermeability should be susceptible to pharmacological modulation.  相似文献   

17.
A method has been developed to study the orientation of proteins in the cytoplasmic membrane of Escherichia coli. Vesicles from sonicated cells were incubated in droplets on electron microscope support grids in sequence with a monoclonal antibody (MAb) against a protein with an unknown orientation (PBP 1b) followed by a MAb against a periplasmic component (peptidoglycan). The different MAbs were made visible with 5- and 10-nm gold-conjugated secondary antibodies, respectively. PBP 1b appeared to colabel with peptidoglycan. The labeling of PBP 1b in membrane vesicles with MAbs against four different epitopes was further used to estimate the number of PBP 1b molecules per cell. Approximately 1,400 PBP 1b molecules per cell grown in broth were labeled. The spatial distribution of the epitopes of the MAbs was studied by immunocolabeling of pairs of MAbs and by competitive antibody-binding inhibition. It could be tentatively concluded that the four epitopes form a cluster of antigenic determinants which occupy less than half of the surface of PBP 1b.  相似文献   

18.
Cultured bovine corneal endothelial cells can be grown in three ways: on plastic, on plastic with fibroblast growth factor present in the media, and on their own preformed extracellular matrix. On plastic alone, cells grow in a disorderly fashion and secrete matrix on all cell surfaces. Cells grown on plastic with growth factor or on a matrix, at confluence, have matrix deposition only on the basal surface of the cells and an orderly contact-inhibited pattern of growth. This correlates with the polarity they demonstrate histologically. This cell-matrix pattern resembles the pattern observed in vivo. Both the soluble growth factor and the extracellular matrix are able to modulate the pattern of collagen synthesis and deposition by cells, but they do so in two entirely different ways. In cells grown on the extracellular matrix, total collagen synthesis is lower but more efficient. Collagen is deposited primarily into the cell layer even at the early sparse stage of culture. In cells grown on plastic with growth factor in the media, collagen is initially secreted into the media and does not become incorporated into the matrix. The deposition of collagen on the basal surface of cell occurs only late in the culture, and is achieved by increments in a stepwise manner. The in vivo-like pattern is not manifest until confluence has been reached. Thus, the extracellular matrix functions not only as a structural support, but is also instructional to the cells plated on it. In this case, the matrix regulates the level of collagen synthesis in the cells and modulates the pattern of collagen deposition. Soluble growth factors may act in part by enhancing a cell's ability to elaborate an appropriate matrix pattern necessary for the cell's own growth and accurate function.  相似文献   

19.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

20.
The A6 cell line is a model for tight epithelia and studies of epithelial polarity. Monoclonal antibodies (MAbs) were produced by immunization of mice with intact A6 cells and fusion of spleen cells to generate hybridomas. Hybridoma supernatants were screened by ELISA to select MAbs binding to the apical membrane of confluent A6 cells. Localization of MAb binding was examined by indirect immunofluorescence using cross sections of A6 monolayers grown on collagen coated filters. One MAb, designated 13F12, was positive by apical surface ELISA but localized specifically to the basolateral membrane of cross sections of A6 monolayers on filters. Immunofluorescence labeling of confluent A6 cells grown on glass cover slips revealed that MAb 13F12 does not bind to the apical membrane, but binds to basolateral determinants in the regions of domes, where it appears able to penetrate cellular junctions. Subconfluent A6 cells express the antigen all over the cell surface. Cells approaching confluency express the antigen on the apical membrane of some cells but not others, and as the cells reach confluency, the antigen disappears from the apical surface, and the cells become fully polarized. A6 cells at confluency on glass cover slips are equally polarized as cells grown on filters with respect to this antigen. The antigen has been identified by immunoprecipitation as a 22 kDa protein. High concentrations of MAb 13F12 did not inhibit cell plating, indicating that the antigenic site is not directly involved in cell adhesion to the substrate. MAb 13F12 should prove to be a useful tool to study many aspects of epithelial polarity, including the signals involved in sorting of proteins to specific membrane domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号