首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host‐specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among‐individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next‐generation sequencing to genotype the sticklebacks’ gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC‐microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex‐dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis‐associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite‐driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.  相似文献   

2.
Accumulating evidence suggests that the response of bacteria to antibiotics is significantly affected by the presence of other interacting microbes. These interactions are not typically accounted for when determining pathogen sensitivity to antibiotics. In this perspective, we argue that resistance and evolutionary responses to antibiotic treatments should not be considered only a trait of an individual bacteria species but also an emergent property of the microbial community in which pathogens are embedded. We outline how interspecies interactions can affect the responses of individual species and communities to antibiotic treatment, and how these responses could affect the strength of selection, potentially changing the trajectory of resistance evolution. Finally, we identify key areas of future research which will allow for a more complete understanding of antibiotic resistance in bacterial communities. We emphasise that acknowledging the ecological context, i.e. the interactions that occur between pathogens and within communities, could help the development of more efficient and effective antibiotic treatments.Subject terms: Microbial ecology, Antibiotics, Bacterial evolution  相似文献   

3.
4.
Jodi N. Price  Meelis Pärtel 《Oikos》2013,122(5):649-656
Synthesis We used meta‐analyses to examine experimental evidence that functional similarity between invaders and resident communities reduces invasion. We synthesized evidence from studies that experimentally added seed to resident communities in which the functional group composition had been manipulated. We found communities containing functionally similar resident species reduced invasion of forb but not grass invaders. However, experimental design dramatically influenced the results – with evidence for limiting similarity only found in artificially assembled communities, and not when studies used functional group removal from more ‘natural communities’. We suggest that functional group similarity plays a limited role in biotic resistance in established communities. The principle of limiting similarity suggests that species must be functionally different to coexist; based on the assumption that inter‐specific competition should be greatest between functionally similar species. There has been controversy over the generality of this assembly rule for plant communities with some studies finding evidence for limiting similarity and others not. One approach to testing this is to examine the ‘invasion’ success of species into communities in which the functional group composition has been manipulated. Using a meta‐analysis approach, we examined the generality of limiting similarity for plant communities based on published experimental studies. We asked – is establishment of an invading species less successful if it belongs to a functional group that is already present in the community compared to a community in which that functional group is absent? We explored separately colonisation (i.e. germination, establishment or seedling survival) and performance (i.e. biomass, cover or growth) of different functional groups (forbs and grasses) and experimental designs (removal experiments of more or less natural communities and synthetic‐assemblage experiments). We found that communities containing functionally similar resident species did reduce invader colonisation and performance of forb invaders, but did not reduce colonisation or performance of grass invaders. Evidence in support of limiting similarity was only detected in synthetic‐assemblage experiments and not when studies used functional group removal from ‘natural’ communities. Functional similarity is an important aspect of biotic resistance for forb invaders, but was only found in artificial communities. This has implications for restoration ecology especially when communities are built de novo. However, we suggest that limiting similarity plays a limited role in biotic resistance, because no evidence was detected in established communities.  相似文献   

5.
Aim The biogeography of microbes is poorly understood and there is an open debate regarding if and how microbial biodiversity is structured. At the beginning of the 20th century, Baas Becking laid the foundations for the biogeography of microbes by stating that ‘Everything is everywhere, but the environment selects’ (the EisE hypothesis). This hypothesis remained dogma for almost a century. However, the recognition that microbial ‘species’ are often assemblages of reproductively isolated lineages challenged the EisE hypothesis, leading to the now common assumption that microbial communities possess cryptic biogeographic structures. We tested the presence of a cryptic biogeographical structure for a well‐characterized fungal species complex (the Phialocephala fortinii s.l.–Acephala applanata species complex, PAC) using precise molecular species resolution. In addition, we analysed factors that could govern PAC community assembling. Locations Forty‐four study sites in temperate and boreal forests across the Northern Hemisphere were included. Methods (1) The distance–decay relationship among PAC communities was calculated and a resampling procedure was applied to analyse the effect of sampling intensity and geographic distances among PAC communities. (2) Factors shaping PAC communities (e.g. climatic factors and tree species composition) were studied. (3) We tested PAC communities for random composition. Results We found that the similarity of species assemblages did not decrease with increasing geographical distance. Moreover, species diversity did not increase by expanding the area sampled. Instead, species diversity increased by increasing the sampling effort. Community composition correlated neither with tree species composition nor climate, and no association among species was observed. Main conclusions We could not discover any cryptic biogeographic structure even after applying refined species assignment but we demonstrate the importance of sampling effort for understanding the biogeography of microorganisms. Moreover, we show that primarily stochastic effects are responsible for the species composition of PAC communities.  相似文献   

6.
7.
Parasites harbour rich microbial communities that may play a role in host-parasite interactions, from influencing the parasite’s infectivity to modulating its virulence. Experimental manipulation of a parasite’s microbes would be essential, however, in order to establish their causal role. Here, we tested whether indirect exposure of a trematode parasite within its snail intermediate host to a variety of antibiotics could alter its bacterial community. Based on sequencing the prokaryotic 16S ssrRNA gene, we characterised and compared the bacterial community of the trematode Philophthalmus attenuatus before, shortly after, and weeks after exposure to different antibiotics (penicillin, colistin, gentamicin) with distinct activity spectra. Our findings revealed that indirectly treating the parasites by exposing their snail host to antibiotics resulted in changes to their bacterial communities, measured as their diversity, taxonomic composition, and/or the relative abundance of certain taxa. However, alterations to the parasite’s bacterial community were not always as predicted from the activity spectrum of the antibiotic used. Furthermore, the bacterial communities of the parasites followed significantly divergent trajectories in the days post-exposure to antibiotics, but later converged toward a new state, i.e. a new bacterial community structure different from that pre-exposure. Our results confirm that a trematode’s microbial community can be experimentally altered by antibiotic exposure while within its snail host, with the dynamic nature of the bacterial assemblage driving it to a new state over time after the perturbation. This research opens new possibilities for future experimental investigations of the functional roles of microbes in host-parasite interactions.  相似文献   

8.
Respiration by plants and microorganisms is primarily responsible for mediating carbon exchanges between the biosphere and atmosphere. Climate warming has the potential to influence the activity of these organisms, regulating exchanges between carbon pools. Physiological ‘down‐regulation’ of warm‐adapted species (acclimation) could ameliorate the predicted respiratory losses of soil carbon under climate change scenarios, but unlike plants and symbiotic microbes, the existence of this phenomenon in heterotrophic soil microbes remains controversial. Previous studies using complex soil microbial communities are unable to distinguish physiological acclimation from other community‐scale adjustments. We explored the temperature‐sensitivity of individual saprotrophic basidiomycete fungi growing in agar, showing definitively that these widespread heterotrophic fungi can acclimate to temperature. In almost all cases, the warm‐acclimated individuals had lower growth and respiration rates at intermediate temperatures than cold‐acclimated isolates. Inclusion of such microbial physiological responses to warming is essential to enhance the robustness of global climate‐ecosystem carbon models.  相似文献   

9.
Assembly of microbial communities is shaped by various physical and chemical factors deriving from their environment, including other microbes inhabiting the certain niche. In addition to direct cell–cell contacts, primary and secondary metabolites impact the growth of microbial community members. Metabolites might act as growth-promoting (e.g., cross-feeding), growth-inhibiting (e.g., antimicrobials) or signalling molecules. In multi-species microbial assemblies, secreted metabolites might influence specific members of the community, altering species abundances and therefore the functioning of these microcosms. In the current issue, Cosetta and colleagues describe a unique volatile metabolite-mediated cross-kingdom interaction that shapes the cheese rind community assembly. The study paves the way of our understanding how fungus-produced volatile compounds promote the growth of a certain bacterial genus, a principal connection between community members of the cheese rind.  相似文献   

10.
Many factors can affect the assembly of communities, ranging from species pools to habitat effects to interspecific interactions. In microbial communities, the predominant focus has been on the well-touted ability of microbes to disperse and the environment acting as a selective filter to determine which species are present. In this study, we investigated the role of biotic interactions (e.g., competition, facilitation) in fungal endophyte community assembly by examining endophyte species co-occurrences within communities using null models. We used recombinant inbred lines (genotypes) of maize (Zea mays) to examine community assembly at multiple habitat levels, at the individual plant and host genotype levels. Both culture-dependent and culture-independent approaches were used to assess endophyte communities. Communities were analyzed using the complete fungal operational taxonomic unit (OTU) dataset or only the dominant (most abundant) OTUs in order to ascertain whether species co-occurrences were different for dominant members compared to when all members were included. In the culture-dependent approach, we found that for both datasets, OTUs co-occurred on maize genotypes more frequently than expected under the null model of random species co-occurrences. In the culture-independent approach, we found that OTUs negatively co-occurred at the individual plant level but were not significantly different from random at the genotype level for either the dominant or complete datasets. Our results showed that interspecific interactions can affect endophyte community assembly, but the effects can be complex and depend on host habitat level. To our knowledge, this is the first study to examine endophyte community assembly in the same host species at multiple habitat levels. Understanding the processes and mechanisms that shape microbial communities will provide important insights into microbial community structure and the maintenance of microbial biodiversity.  相似文献   

11.
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard‐wired to behave in a vigorous and ecologically aggressive manner. These ‘microbial weeds’ are able to dominate the communities that develop in fertile but uncolonized – or at least partially vacant – habitats via traits enabling them to out‐grow competitors; robust tolerances to habitat‐relevant stress parameters and highly efficient energy‐generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat‐specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non‐weed species. We propose that the concept of nonweeds represents a ‘dustbin’ group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r‐strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary‐phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open‐habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.  相似文献   

12.
Vector‐borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito‐associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next‐generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered (Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human‐impacted landscapes that may ultimately affect vector‐borne disease risk.  相似文献   

13.
Dong He  Shekhar R. Biswas 《Oikos》2019,128(5):659-667
Species’ response to environmental site conditions and neighborhood interactions are among the important drivers of species’ spatial distributions and the resultant interspecies spatial association. The importance of competition to interspecies spatial association can be inferred from a high degree of trait dissimilarity of the associated species, and vice versa for environmental filtering. However, because the importance of environmental filtering and competition in structuring plant communities often vary with spatial scale and with plant life stage, the species’ spatial association–trait dissimilarity relationship should vary accordingly. We tested these assumptions in a fully mapped 50‐ha subtropical evergreen forest of China, where we assessed the degrees of interspecies spatial associations between adult trees and between saplings at two different spatial scales (10 m versus 40 m) and measured the degrees of trait dissimilarity of the associated species using six traits (leaf area, specific leaf area, leaf dry‐matter content, wood density, wood dry‐matter content and maximum height). Consistent across spatial scales and plant life stages, the degree of interspecies spatial association and the degree of overall trait dissimilarity (i.e. all six traits together) were negatively correlated, suggesting that environmental filtering might help assemble functionally similar species in the forest under study. However, when we looked into the spatial association–trait dissimilarity relationship for individual traits, we found that the relationships between interspecies spatial associations and the dissimilarity of wood density and dry‐matter content were significant for adults but not for saplings, suggesting the importance of wood traits in species’ survival during ontogeny. We conclude that processes shaping interspecies spatial association are spatial scale and plant life stage dependent, and that the distributions of functional traits offer useful insights into the processes underlying community spatial structure.  相似文献   

14.
Metabolic network modeling of microbial communities provides an in‐depth understanding of community‐wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high‐quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community‐level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph–heterotroph consortium that was used to provide data needed for a community‐level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources. J. Cell. Physiol. 231: 2339–2345, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

15.
Belowground communities exert major controls over the carbon and nitrogen balances of terrestrial ecosystems by regulating decomposition and nutrient availability for plants. Yet little is known about the patterns of belowground communities and their relationships with environmental factors, particularly at the regional scale where multiple environmental gradients co‐vary. Here, we describe the patterns of belowground communities (microbes and nematodes) and their relationships with environmental factors based on two parallel studies: a field survey with two regional‐scale transects across the Mongolia plateau and a water‐addition experiment in a typical steppe. In the field survey, soils and plants were collected across two large‐scale transects (a 2000‐km east–west transect and a 900‐km south–north transect). At the regional‐scale, the variations in soil microbes (e.g. bacterial PLFA, fungal PLFA, and F/B ratio) were mainly explained by precipitation and soil factors. In contrast, the variation in soil nematodes (e.g. density of trophic groups and the bacterial‐feeding/fungal‐feeding nematode ratio) were primarily explained by precipitation. These variations of microbe or nematode variables explained by environmental factors at regional scale were derived from different vegetation types. Along the gradient from nutrient‐poor to nutrient‐rich vegetation types, the total variation in soil microbes explained by precipitation increased and that explained by plant and soil decreased, while the opposite was true for soil nematodes. Experimental water addition, which increased rainfall by 30% during the growing season, increased biomass or density of belowground communities, with the nematodes being more responsive than the microbes. The different responses of soil microbial and nematode communities to environmental gradients at the regional scale likely reflect their different adaptations to climate, soil nutrients, and plants. Our findings suggest that the soil nematode and microbial communities are strongly controlled by bottom‐up effects of precipitation alone or in combination with soil conditions.  相似文献   

16.
Biodiversity decline is a major concern for ecosystem functioning. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in both natural and artificial ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal species richness on soil invasion by non resident microbes. Synthetic fungal communities with a species diversity ranging from 1 to 8 were assembled in laboratory microcosms and used in three factorial experiments to assess the effect of diversity on soil fungistasis, microbial invasion of soil amended with plant litter and of plant rhizosphere. The capability of different microbes to colonize environments characterized by different resident microbial communities was measured. The number of microbial species in the microcosms positively affected soil fungistasis that was also induced more rapidly in presence of synthetic communities with more species. Moreover, the increase of resident fungal diversity dramatically reduced the invasibility of both soil and plant rhizosphere. We found lower variability of soil fungistasis and invasibility in microcosms with higher species richness of microbial communities. Our study pointed out the existence of negative relationships between fungal diversity and soil invasibility by non resident microbes. Therefore, the loss of microbial species may adversely affect ecosystem functionality under specific environmental conditions.  相似文献   

17.
Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre‐scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in ‘ripple‐like’ and ‘star‐like’ architectures – as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size‐structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single‐species bacterial biofilms.  相似文献   

18.
Vertebrates harbour microbes both internally and externally, and collectively, these microorganisms (the ‘microbiome’) contain genes that outnumber the host's genetic information 10‐fold. The majority of the microorganisms associated with vertebrates are found within the gut, where they influence host physiology, immunity and development. The development of next‐generation sequencing has led to a surge in effort to characterize the microbiomes of various vertebrate hosts, a necessary first step to determine the functional role these communities play in host evolution or ecology. This shift away from a culture‐based microbiological approach, limited in taxonomic breadth, has resulted in the emergence of patterns suggesting a core vertebrate microbiome dominated by members of the bacterial phyla Bacteroidetes, Proteobacteria and Firmicutes. Still, there is a substantial variation in the methodology used to characterize the microbiome, from differences in sample type to issues of sampling captive or wild hosts, and the majority (>90%) of studies have characterized the microbiome of mammals, which represent just 8% of described vertebrate species. Here, we review the state of microbiome studies of nonmammalian vertebrates and provide a synthesis of emerging patterns in the microbiome of those organisms. We highlight the importance of collection methods, and the need for greater taxonomic sampling of natural rather than captive hosts, a shift in approach that is needed to draw ecologically and evolutionarily relevant inferences. Finally, we recommend future directions for vertebrate microbiome research, so that attempts can be made to determine the role that microbial communities play in vertebrate biology and evolution.  相似文献   

19.
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined “communities of communities” linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host‐associated microbial systems. Successfully incorporating microbiota into community‐level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.  相似文献   

20.
Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high‐throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100‐day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature‐sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial ‘bioindicators’ are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号