首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract The deep lateritic earths that cap the serpentinite outcrop in the Rockhampton – Marlborough area on the Tropic of Capricorn in Central Queensland have been eroded to expose the underlying ultramafic rock. Water‐holding capacity of these nutrient‐poor soils increases in a gradient from the skeletal soils to the deep lateritic earths and results in a continuum of structural formations from open‐woodland to woodland to open‐forest. A couple of closed‐forest (rainforest) stands have developed where seepage into Marlborough Creek occurs throughout the year. Aerodynamic fluxes (frictional, thermal and evaporative) in the atmosphere as it flows over and through the vegetation influence the annual foliage growth in all strata in the continuum from skeletal soils to deep lateritic earths. The lateral growth of each plant is abraded so that the sum of the foliage projective covers of overstorey (FPCo) and understorey (FPCu) strata – that is Σ(FPCo + FPCu) – remains constant throughout the serpentinite soil catena. As more water becomes available in the soil catena, the mineral nutrient levels in overstorey leaves increase, making developing leaves more vulnerable to insect attack. Although the number of leaves produced annually on each vertical foliage shoot in the overstorey increases along the soil‐water gradient, Σ(FPCo + FPCu) remains constant in all stands. The carbon isotope ratios (a measure of stomatal resistance) and leaf specific weights (LSWs) (a measure of the proportion of structural to cytoplasmic content in a leaf) of overstorey and understorey strata, however, are constant throughout the continuum. The well‐watered rainforest pockets – where seepage occurs – form the end point of this serpentinite continuum. LSWs and carbon isotope ratios of the canopy trees are similar to those in the sheltered understorey in the eucalypt communities. A gradient of foliage attributes is observed from evergreen canopy trees (12 m) to subshrubs (2 m) in the sunlit life forms that compose the complex structure of the rainforest stands in the humid to subhumid climate of Central Queensland. As alpha diversity (number of species per hectare) is correlated with annual shoot growth per hectare, species richness along the serpentinite continuum is almost half that of nearby plant communities on medium‐nutrient soils. The one to two eucalypt species per hectare are about a tenth of the number recorded on adjacent medium‐nutrient soils.  相似文献   

2.
The species richness (number of vascular plants per hectare) of Australian plant communities (containing a mosaic of gap, regeneration, maturation and senescent phases) is correlated with the annual biomass productivity of the overstorey canopy.The annual production of leaves and stem in the canopy of the plant community is shown to be limited by the requirements of photosynthesis (particularly light and the availability of water) and the length of the growing season.The species richness of Australian plant communities is the product of the blance between the dominance of the overstorey and the response of the understorey to the shading of the overstorey. For all climatic regions and zones the species richness of the overstorey of the plant community is shown to be exponentially related to the annual shoot growth of the overstorey canopy, until the latitudinal or altitudinal tree line is reached. With latitudinal increase outside the tropics, overstorey canopies of forest communities absorb increasingly more of the incident solar radiation. markedly reducing the species richness of the understorey strata. In contrast, in these latitudes the overstorey of plant communities with widely spaced trees or tall shrubs will absorb far less solar radiation, thus enabling the species richness of the understorey to be maintained.  相似文献   

3.
At maturity, both overstorey and understorey foliage projective covers (FPC) tend to reach steady-state values which are correlated with the evaporative coefficient (k) in the water balance equation of the soil-plant-atmosphere continuum. Overstorey FPCs of mature communities increase linearly from 20 to 85% along the moisture gradient from arid to humid regions. Understorey FPCs in mature communities are relatively constant along the same moisture gradient, increasing only slightly from 40 to 47%. Plant communities which have overstorey FPCs different from the norm, appear to show a compensatory decrease or increase in understorey FPC so that the sum of the FPCs of overstorey and understorey is equal to that predicted for the region.  相似文献   

4.
Question: Thousands of small isolated forest fragments remain around churches (“church forests”) in the almost completely deforested Ethiopian Highlands. We questioned how the forest structure and composition varied with altitude, forest area and human influence. Location: South Gondar, Amhara National Regional State, Northern Ethiopia. Methods: The structure and species composition was assessed for 810 plots in 28 church forests. All woody plants were inventoried, identified and measured (stem diameter) in seven to 56 10 m x 10‐m plots per forest. Results: In total, 168 woody species were recorded, of which 160 were indigeneous. The basal area decreased with tree harvest intensity; understorey and middle‐storey density (<5 cm DBH trees) decreased with grazing; overstorey density (>5 cm DBH trees) increased with altitude. The dominance of a small set of species increased with altitude and grazing intensity. Species richness decreased with altitude, mainly due to variation in the richness of the overstorey community. Moreover, species richness in the understorey decreased with grazing intensity. Conclusions: We show how tree harvesting intensity, grazing intensity and altitude contribute to observed variations in forest structure, composition and species richness. Species richness was, however, not related to forest area. Our study emphasizes the significant role played by the remaining church forests for conservation of woody plant species in North Ethiopian Highlands, and the need to protect these forests for plant species conservation purposes.  相似文献   

5.
Two South African mountain fynbos sites, similar in drainage, elevation, slope angle, slope aspect and soil type but with differing fire histories, were studied to measure how the effect of high densities of overstorey proteas in one fire cycle affects the α-diversity levels of the plant community in the following fire-cycle, how their repeated absence due to several short fire-cycles affects their species richness and finally, at what spatial scale such patterns are most appropriately measured. High prefire canopy cover percentages and densities of overstorey proteas increase the postfire α-diversity of understorey species. In addition, the increase in species richness observed occurred for all higher plant life history types present. At sites where one or more short fire cycles resulted in the repeated absence of overstorey proteas, the number of plant species present in the understorey was lower than at a site where overstorey proteas persisted. These results are dependent on the spatial scale at which the α-diversity of understorey species is measured. At small quadrat sizes (< 5 m2), overstorey proteas decrease the number of understorey species present, while at larger quadrat sizes (100 m2) higher species richness is observed. The contradiction in conclusions when α-diversity is measured at different spatial scales can be attributed to the patchiness of fynbos communities. Overstorey proteas play an important role in maintaining the patchiness component of fynbos communities by diminishing the effect of understorey resprouting species, making available regeneration niches for the maintenance of plant species richness. Where small quadrats are used, the effect of patchiness on the dynamics of the mountain fynbos community is lost. Thus, it is the fire history prior to the last fire and how it affects overstorey proteas that is important in the determination of α-diversity levels in mountain fynbos plant communities.  相似文献   

6.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

7.
Abstract. Previous studies in the mountain fynbos of South Africa have demonstrated that short fire cycles favour the establishment of dense covers of understorey sprouters while longer fire intervals enable the establishment from seed of overstorey proteas and the formation of a overstorey. One consequence of these differences between fire cycle lengths is the effect that understorey sprouters and an overstorey protea canopy have on species richness. In the case of short fire intervals, species richness is decreased while longer intervals between fires allow species richness to decrease or increase depending on the patchiness of the overstorey canopy. Such results are suggestive of competitive effects between understorey sprouters and overstorey canopy proteas. In this study, data were collected from several pyric successional stages in mountain fynbos to study the effect of overstorey proteas on the growth and flowering of understorey sprouters since the last fire. Data were also collected to determine the effect that understorey sprouters had on the establishment and fecundity of overstorey protea species. Competitive interactions between overstorey proteas and sprouting understorey species were evident at all the sites studied. The vegetative growth and seed production of understorey sprouters, which grew under a canopy of overstorey proteas during the current interfire period, were significantly lower than that for plants growing in the open. In addition, the postfire growth and seed production of understorey sprouters were significantly lower for individuals, which grew under an overstorey protea canopy during the previous fire cycle, than for those individuals which grew in the open. The fecundity of overstorey proteas, which grew near understorey sprouters, was lower than that of plants which grew in the open. This effect was evident for up to the first 15 years after a fire. However, not all understorey sprouters affected the overstorey proteas equally. Also, seedlings of overstorey proteas established significantly less successfully in close proximity to understorey sprouters after a fire than in the open or under proteas. Finally, the results demonstrate that complex species‐specific, understorey–overstorey interactions are important in mountain fynbos. For example, some overstorey species depend on trophically similar species to reduce potential competition from understorey sprouters for their successful establishment at a site.  相似文献   

8.
Tree species composition and stand structural complexity are valuable indicators of sustainable forest management. This article aims to investigate the relative influence of forest overstorey composition and structural attributes on understorey composition and diversity, taking into account also site characteristics and broad-scale environmental variables. We sampled vascular plant species composition and forest structure in 132 plots in the Cilento and Vallo di Diano National Park (southern Italy). Spearman’s non-parametric correlation coefficients were calculated between overstorey and understorey diversity indices, beech percentage, and altitude and environmental indices. A complete partitioning of the variation in understorey composition was then performed through canonical correspondence analysis considering four sets of variables: (1) overstorey composition, (2) structural attributes, (3) topography, and (4) landscape abiotic variables. Finally, we constructed a regression tree analysis of understorey species richness using the same explanatory variables. Understorey diversity indices were positively correlated with overstorey diversity indices and with environmental indices (i.e., light and soil heterogeneity). Overstorey and understorey diversity indices were negatively correlated with both altitude and the dominance of beech in the overstorey. Compositional variation was due primarily to overstorey composition and secondarily to structural attributes. Regression tree analysis revealed that altitude, overstorey species richness, and structural attributes play an important role in determining understorey species richness. According to our results, understorey composition and diversity are strongly related to overstorey composition and structural attributes. Indeed, the latter proved to be effective indicators of understorey characteristics in the study area.  相似文献   

9.
The niche complementarity hypothesis has received empirical support but species differ in functional strategies for their contribution to ecosystem function, as predicted by the mass ratio hypothesis. Our understanding of how functional identity of conservative and acquisitive strategies of trees predicts aboveground biomass across forest strata (i.e. overstorey and understorey) remains unclear. Aboveground biomass, community-weighted mean (CWM − functional identity) of trait values (6 leaf and 2 stem traits), and soil physicochemical properties were estimated for 125 plots in a 5-ha subtropical forest in Eastern China. We used multiple linear regressions models to relate aboveground biomass to CWM indices at overstorey and understorey strata separately, and whole-community level. We finally employed the structural equation model to test for the effects of overstorey on understorey strata, in addition to the effects of soil physicochemical properties. Forest strata optimal models showed that overstorey strata had high aboveground biomass when they are dominated by functional identity of tree height, whereas high aboveground biomass in understorey strata was driven by functional identity of dense-wooded conservative strategy. Whole-community optimal model showed that communities dominated by functional identity of leaf dry matter content and mean leaf area had high aboveground biomass. Aboveground biomass was negatively related to soil nutrients across forest strata and whole-community level. The structural equation model showed that CWM of overstorey tree height did not affect understorey functional identity and aboveground biomass, when soil physicochemical properties were accounted. Soil nutrients had positive effect on functional identity of overstorey tree height whereas negative effect on functional identity of understorey dense-wooded strategy. This study highlights the fundamental roles of forest strata where overstorey and understorey strata contribute to their corresponding aboveground biomass with contrasting functional strategies across a range of soil nutrients. High aboveground biomass was potentially driven by functional identity of tree height through making use of plentiful soil nutrients at overstorey strata, whereas by conservative strategy at understorey strata through enduring nutrient-poor soils. To better understand the roles of functional identity of conservative and acquisitive strategies in driving ecosystem functions, it is worth to analyse forest strata separately.  相似文献   

10.
The North American woody species, Prunus serotina Ehrh., is an aggressive invader of forest understories in Europe. To better understand the plant invasion process, we assessed understorey plants and Prunus serotina seedlings that have colonized a 35-year-old replicated common-garden experiment of 14 tree species in south-western Poland. The density and size of established (> 1 year old) P. serotina seedlings varied among overstorey species and were related to variation in light availability and attributes of the understorey layer. In a multiple regression analysis, the density of established P. serotina seedlings was positively correlated with light availability and understorey species richness and negatively correlated with understorey species cover. These results suggest that woody invader success is adversely affected by overstorey shading and understorey competition for resources. Simultaneously, however, invader success may generally be positively associated with understorey species richness because both native and invasive plant colonization respond similarly to environmental conditions, including those influenced by overstorey tree species. Identification of characteristics of forests that increase their susceptibility to invasion may allow managers to target efforts to detect invasives and to restore forests to states that may be less invasible.  相似文献   

11.
Abstract. We describe a model of heath vegetation, in which species were classified into five functional groups based on characteristics of their propagule pools, post-fire growth, timing and mode of reproduction and competitive status. The model assumes no recruitment without fire and a simple competitive hierarchy based on vertical stature. A critical feature of the model is an initial post-fire window of 5–6 yr in which competition from overstorey species on understorey species is reduced. Understorey functional groups differ in their ability to exploit this window. In the field, we tested five predictions derived from the model: (a) overall species richness of understorey varies inversely with overstorey density as a result of a trend in richness of woody species, but not in herbaceous species; (b) where an overstorey was present in the previous fire interval, post-fire population density is reduced in a functional group of understorey serotinous resprouting shrubs, but not in a group of understorey obligate-seeding shrubs with soil seed banks; (c) in understorey serotinous resprouting shrubs, post-fire regrowth in resprouting individuals is adversely affected by the presence of an overstorey in the preceding fire interval; (d) in understorey serotinous resprouting shrubs, levels of pre-fire propagules are lower in the presence of an overstorey, reducing the density of post-fire recruits; and (e) in understorey serotinous resprouting shrubs, recruitment relative to the pre-fire population is unaffected by overstorey species within the window of reduced competition. Of these, three tests (a,b,d) supported the model, one (e) may support the model, but the results were inconclusive and one (c) did not support the model. Limitations and further applications of the model are discussed. Our results suggest that maintenance of high densities of overstorey populations is in conflict with conservation of some understorey species. Models of the type we propose will help identify and resolve such conflicts and promote the judicious use of fire to maintain full species diversity of plant communities.  相似文献   

12.
Foliage Projective Cover of the overstorey (canopy) of a‘climax’community appears to reach an equilibrium value determined largely by the prevailing climate. Overstorey FPC decreases in‘climax’communities in a graded series from humid to arid regions. Understorey cover (of all strata below the canopy) in‘climax’communities attains a balance with overstorey FPC. Disturbance (gaps, microhabitats, fire, overgrazing, invasion of woody weeds, etc.) may reduce the overstorey cover which will be compensated by an increase in understorey cover. Secondary succession back to the‘climax’structure will follow a path maintaining an inverse linear relationship between understorey cover and overstorey cover. At the same time, species diversity appears to decrease as overstorey cover increases.  相似文献   

13.
1. In most cases, the most important determinant of wetland vegetation is the water regime. Although water regime is usually described and managed at the scale of whole wetlands, the patterning of vegetation is likely to be determined by water regimes that are experienced at much finer spatial scales. In this study, we assess the significance of internal heterogeneity in water regimes and the role that this heterogeneity plays in vegetation patterning. 2. The effects of water regime on wetland plant species richness and vegetation structure were studied at Dowd Morass, a 1500 ha, Ramsar‐listed wetland in south‐eastern Australia that is topographically heterogeneous. Data on plant variables and water depth were collected along 45 (50 m) transects throughout the wetland and related to water regimes assigned individually for each transect. Wetland plants were assigned to plant functional groups (PFG) that describe the response of plants to the presence or absence of water at different life stages. 3. The classification of water depth data indicated four distinct water regimes in the wetland that were differentiated primarily by the duration of the dry period. Representatives of all PFGs co‐existed over small spatial scales where topographical variation was present, and the richness and cover of understorey species declined as transects became more deeply and permanently flooded. Some PFGs (e.g. amphibious fluctuation tolerator‐low growing and amphibious fluctuation responder‐morphologically plastic) were eliminated by extended periods of flooding, which increased the cover but not richness of submerged plants. Species richness and foliage projective cover declined as water regimes shifted from shallow and frequently exposed conditions to regimes typified by deeper and longer inundation. Cover of the structurally dominant woody species was compromised by deeply flooded conditions but vegetative regeneration occurred despite high water levels. 4. Internal topographical variation generates mosaics of water regimes at fine spatial scales that allow plant species with different water regime requirements to co‐exist over small distances. Deep water and an absence of dry periods result in decreased cover of plants and an overall loss of species richness in the understorey. Water regimes are described that promote regeneration and cover of structurally dominant taxa and increased species richness in the understorey. The study demonstrates a strong association between vegetation and the diverse water regimes that exist within a single wetland, a pattern that will be useful for modelling the effects of modified water regimes on wetland vegetation.  相似文献   

14.
林下生物量影响因素:幼龄林树种特性比丰富度更重要 生物多样性与生态系统功能的正相关关系已被广泛报道,其主要来源于对草原生态系统的研究。然而,该结论并不一定适用于更复杂的环境,例如具有不同垂直层次的森林。举例而言,已有研究表明上层乔木树种丰富度与林下生产力降低有关。树种丰富度是否会通过增加(由于生境异质性)或降低(通过增强竞争)资源的可利用性进而影响林下生产力,以及林下生产力是否受树种特性的影响更大,这些影响机制都可能会随着时间的推移而改变。此外,研究还表明,丰富度-生产力关系随着环境背景的变化而改变。本研究利用可以操控树种丰富度的实验林场研究了这些不同垂直层位里的时间和环境动态。在中国亚热带森林生物多样性与生态系统功能(BEF-China)研究计划的框架下,我们在3年时间里沿树种丰富度梯度反复采集林下生物量样本,研究了不同环境处理中树种丰富度、树种特性和时间对林下生物量的影响。尽管我们发现乔木层特性对林下生物量有显著和一致的影响,但是树种丰富度对后者却不具有这种影响。另外,在森林结构层之间,可能并不存在单一的、具有普遍性的上层乔木树种丰富度与林下生产力的相关关系,并且与上层乔木相关的环境因素(如透光率)对林下生产力的贡献程度会随着时间而变化。总体而言,我们的结果表明,在研究森林结构层之间的关系时应将时间动态变化考虑在内。  相似文献   

15.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

16.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

17.
Forest stratification plays a crucial role in the interception of light and plants' photosynthetic activities. However, there is still a lack of information on the contribution of tropical forest stratification to its functioning, despite the increasing number of studies. Here, we analysed from a perspective of the whole tree community (WTC) and forest strata (i.e., large trees, understory trees, and small stems), the relationship between abiotic, biotic factors and aboveground Carbon (AGC). The abiotic factors-AGC relationships were positive for all strata and WTC. However, soil factors-AGC relationship was stronger for small stems and understorey, while topography factor-AGC relationship was stronger for large trees and WTC. Tree size inequality-AGC relationship was positive and much stronger for WTC, large trees and small stems. In addition, a species diversity-AGC relationship was found positive only for large trees and WTC. These results highlight the niche complementarity effect for driving positive relationships of species diversity and individual tree size variation with aboveground biomass at large tree strata and WTC. The lack of positive effect of species diversity on AGC for understorey and small stems strata might be attributable to the selection effect or resource complementarity among species.  相似文献   

18.
Vegetation surveys were carried out at 24 sampling stations distributed over four land use types, namely near-primary forest, secondary forest, agroforestry systems and annual crop lands in the northeastern part of the Korup region, Cameroon, to assess the impact of forest conversion on trees and understorey plants. Tree species richness decreased significantly with increasing level of habitat modification, being highest and almost equal in secondary and near-primary forests. Understorey plant species richness was significantly higher in annual crop lands than in other land use types. The four land use types differed in tree and understorey plant species composition, the difference being smaller among natural forests. Tree and understorey plant density differed significantly between habitat types. Density was strongly correlated with species richness, both for trees and understorey plants. Five tree and 15 understorey plant species showed significant responses to habitat. A 90% average drop in tree basal area from forest to farmland was registered. Our findings support the view that agroforestry systems with natural shade trees can serve to protect many forest species, but that especially annual crop lands could be redesigned to improve biodiversity conservation in agricultural landscapes of tropical rainforest regions.  相似文献   

19.
Aim Plant communities across the temperate zone are changing in response to successional processes and human‐induced disturbances. Here, we assess how upland forest under‐ and overstorey community composition has changed along an edaphic gradient. Location Northern Wisconsin, USA. Methods Forest sites initially sampled in the 1950s were resampled for overstorey composition and diversity, basal area, and understorey composition and diversity. We used clustering methods to identify groups of stands based on overstorey composition, and we used similarity indices, ordination and diversity indices to evaluate changes in species abundance and overall community structure. Results Sites clustered into four overstorey groups along the edaphic gradient: ‘hemlock’ sites dominated by hemlock in 1950, ‘mesic’ sites dominated by northern hardwoods, ‘dry’ sites with a significant pine inclusion in the canopy and diverse ‘dry‐mesic’ sites in the middle. Collectively, forests gained maple, ash and cherry while losing pines, birches and red oaks. The hemlock forest sites gained hardwoods, while the dry‐mesic sites shifted towards a more mesic hardwood composition. Only the driest sites have remained relatively stable in species composition. Main conclusions These trends reflect both ‘mesification’ and homogenization among northern forests. Highly diverse mid‐gradient and mesic hemlock‐dominated stands are transitioning to maple dominance. Fire suppression may be favouring invasions of more mesic plants into historically drier sites, while high deer abundance likely limits hemlock regeneration. If current trends continue, maples will dominate the majority of northern forests, with significant losses of local native species richness and substantial shifts in understorey composition.  相似文献   

20.
Summary The Gnangara Groundwater Mound, centred 38 km north of Perth, Western Australia, is a large, shallow unconfined aquifer that is currently under abstraction as part of the public metropolitan water supply. To investigate the impact of lowering groundwater levels on a Banksia woodland on the Mound, vegetation monitoring near a groundwater abstraction bore (known as P50) began 1 year before becoming operational. In February 1991, 2 years after abstraction commenced, extensive death of the Banksia overstorey was observed within close proximity of the bore, following a short period of high summer temperatures. The site was subsequently revisited and the understorey floristic composition, abundance and vigour of overstorey species resurveyed, and compared with data collected from a site under long‐term monitoring and not currently influenced by abstraction. A lowering of groundwater level by 2.2 m at P50 between the summers of 1990 and 1991, resulting from the cumulative effects of abstraction and below average annual rainfall (low groundwater recharge), coincided with a loss of between 20 and 80% of adults of overstorey species and up to 64% of adults of understorey species within 200 m of the bore. Over a similar time period no significant decreases in the abundance of overstorey or understorey species were recorded in the monitored site not influenced by groundwater abstraction. Of the overstorey species, Holly‐leaf Banksia (Banksia ilicifolia) displayed the greatest susceptibility and lowest net recovery following the abstraction event at P50. The negative impact of groundwater drawdown on Holly‐leaf Banksia populations makes this overstorey species an important indicator of decreasing groundwater levels on the Gnangara Groundwater Mound. Water stress may have been the primary cause of vegetation death in close proximity to the P50 bore, although this would have been exacerbated by extreme summer temperatures (> 45°C) recorded during February 1991. The P50 scenario represents a localized response to an acute drawdown event, in association with other environmental factors, and provides invaluable information on the assessment of groundwater abstraction and poor groundwater recharge events on a Banksia woodland community. However, there are limitations in using the community response at P50 to manage the impact of drawdown events on other plant communities occurring on sandy, shallow aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号