首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Abstract In unpolluted regions, where inorganic nitrogen (N) inputs from the atmosphere are minimal, such as remote locations in southern South America, litterfall dynamics and N use efficiency of tree species should be coupled to the internal N cycle of forest ecosystems. This hypothesis was examined in two evergreen temperate forests in southern Chile (42°30′S), a mixed broad‐leaved forest (MBF) and a conifer forest (CF). Although these forests grow under the same climate and on the same parental material, they differ greatly in floristic structure and canopy dynamics (slower in the CF). In both forests, biomass, N flux, and C/N ratios of fine litterfall were measured monthly from May 1995 to March 1999. There was a continuous litter flux over the annual cycle in both forests, with a peak during autumn in the CF. In the MBF, litterfall decreased during spring. In both forests, the C/N ratios of litterfall varied over the annual cycle with a maximum in autumn. Annual litterfall biomass flux (Mean ± SD = 3.3 ± 0.5 vs 2.0 ± 0.5 Mg ha?1) and N return (34.8 ± 16 vs 9.1 ± 2.8 kg N ha?1) were higher in the MBF than in the CF. At the ecosystem level, litterfall C/N was lower in the MBF (mean C/N ratio = 60.1 ± 15, n = 3 years) suggesting decreased N use efficiency compared with CF (mean C/N ratio = 103 ± 19.6, n = 3 years). At the species level, subordinated (subcanopy) tree species in the MBF had significantly lower C/N ratios (<50) of litterfall than the dominant trees in the CF and MBF (>85). The litterfall C/N ratio and percentage N retranslocated were significantly correlated and were lower in the MBF. The higher net N mineralization in soils of the MBF is related to a lower N use efficiency at the ecosystem and species level.  相似文献   

2.
In temperate rainforests on Chiloé Island in southern Chile (42°S), most canopy trees bear fleshy, avian‐dispersed propagules, whereas emergent tree species have dry, wind‐borne propagules. In the present study, the following hypothesis was tested: regardless of species, fleshy propagules are deposited in greater numbers in canopy gaps and in forest margins and hence have a more heterogeneous seed shadow than wind‐dispersed propagules. To test this hypothesis, the seed rains of these two types of propagules were compared in the following forest habitats: (i) tree‐fall gaps (edges and centre); (ii) forest margins with adjacent pastures; and (iii) under closed canopy (forest interior). Seed collectors (30‐cm diameter) were placed in two (15 and 100 ha) remnant forest patches (n = 60–100 seed collectors per patch) distributed in the four habitats. Seeds were retrieved monthly from each collector during two reproductive seasons (1996, 1997). In both years, the seed rain was numerically dominated by two species with dry propagules (Laureliopsis philippiana and Nothofagus nitida) and three species with fleshy fruits (Drimys winteri, Amomyrtus luma, and Amomyrtus meli). The seed shadows of the two species with dry, wind‐dispersed seeds differed markedly. Seeds of L. philippiana were deposited predominantly in canopy openings, whereas N. nitida seeds fell almost entirely in the forest interior. The fleshy‐fruited species, Drimys and Amomyrtus spp., had similar seed deposition patterns in the various habitats studied, but the between‐year differences in seed rain were greater in Drimys winteri than in Amomyrtus spp. Although no more than 10% of fleshy‐fruited propagules reached the margins of the patch, approximately 7% of these were carried there by birds. Every year, canopy gaps (pooling data from edges and centres) concentrated approximately 60% of the total seed rain of both propagule types in both forest patches. Forest margins received less than 20% of the total seed rain, which was largely dominated by fleshy‐fruited species. Seed shadows were a species‐specific attribute rather than a trait associated with propagule type and dispersal mode.  相似文献   

3.
4.
Heterotrophic nitrogen fixation is a key ecosystem process in unpolluted, temperate old‐growth forests of southern South America as a source of new nitrogen to ecosystems. Decomposing leaf litter is an energy‐rich substrate that favours the occurrence of this energy demanding process. Following the niche ‘complementarity hypothesis’, we expected that decomposing leaf litter of a single tree species would support lower rates of non‐symbiotic N fixation than mixed species litter taken from the forest floor. To test this hypothesis we measured acetylene reduction activity in the decomposing monospecific litter of three evergreen tree species (litter C/N ratios, 50–79) in an old‐growth rain forest of Chiloé Island, southern Chile. Results showed a significant effect of species and month (anova , Tukey's test, P < 0.05) on decomposition and acetylene reduction rates (ARR), and a species effect on C/N ratios and initial % N of decomposing leaf litter. The lowest litter quality was that of Nothofagus nitida (C/N ratio = 78.7, lignin % = 59.27 ± 4.09), which resulted in higher rates of acetylene reduction activity (mean = 34.09 ± SE = 10.34 nmol h?1 g?1) and a higher decomposition rate (k = 0.47) than Podocarpus nubigena (C/N = 54.4, lignin % = 40.31 ± 6.86, Mean ARR = 4.11 ± 0.71 nmol h?1 g?1, k = 0.29), and Drimys winteri (C/N = 50.6, lignin % = 45.49 ± 6.28, ARR = 10.2 ± 4.01 nmol h?1 g?1, k = 0.29), and mixed species litter (C/N = 60.7, ARR = 8.89 ± 2.13 nmol h?1g?1). We interpret these results as follows: in N‐poor litter and high lignin content of leaves (e.g. N. nitida) free‐living N fixers would be at competitive advantage over non‐fixers, thereby becoming more active. Lower ARR in mixed litter can be a consequence of a lower litter C/N ratio compared with single species litter. We also found a strong coupling between in situ acetylene reduction and net N mineralization in surface soils, suggesting that as soon N is fixed by diazotroph bacteria it may be immediately incorporated into mineral soil by N mineralizers, thus reducing N immobilization.  相似文献   

5.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

6.
周博  范泽鑫  杞金华 《生态学报》2020,40(5):1699-1708
研究采用树木生长环在哀牢山中山湿性常绿阔叶林持续9年(2009—2017年)监测了2个常绿树种(厚皮香,Ternstroemia gymnanthera;南亚枇杷,Eriobotrya bengalensis)和2个落叶树种(西桦,Betula alnoides;珍珠花,Lyonia ovalifolia)的树干月生长量,采用逻辑斯蒂生长模型(Logistic model)模拟树木径向生长量和物候参数,并分析了年、季尺度上径向生长与主要气候因子的关系。结果表明:1)4个树种年平均生长量为6.3 mm,落叶树种年平均生长量(10.6 mm/a)显著高于常绿树种(3.0 mm/a);2)雨季(5—10月)是哀牢山中山湿性常绿阔叶林树木生长的主要时期,4个树种雨季平均生长量为5.9 mm,占全年总生长量的93%,其中落叶树种雨季生长量占全年的96%,而常绿树种雨季生长量占全年的86%;3)常绿树种生长季长度为169天,长于落叶树种(137天),而落叶树种最大生长速率(0.14 mm/d)显著高于常绿树种(0.03 mm/d),最大径向生长速率能很好地预测树种年生长量;4)低温、雾日和光合有效...  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号