首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G. D. COOK 《Austral ecology》1994,19(4):359-365
Abstract The nutrient loads contained in the grassy fuel before fires, and of ash subsequently, were compared to determine the fluxes of macronutrients, copper and zinc during fires at Kapalga in Kakadu National Park. The fluxes were estimated in three vegetation types: forest, woodland and open woodland. The magnitudes of the fluxes were greatest in the forest community where grassy fuel loads were highest at about 6.3 t ha?1. In these sites, 54–94% of all measured nutrients in the fuel were transferred to the atmosphere during the fires. For each nutrient, the proportion transferred to the atmosphere as entrained ash was calculated by assuming that calcium was not volatilized during the fires. If the transfer of entrained ash represents local redistribution only, then rainfall accession and the deposition of these particu-lates should replace most of the losses of all nutrients except nitrogen (N). Estimated rates of biological fixation of N appear to be insufficient to replace the annual losses of N. It is therefore concluded that a regime of annual fires that completely burn the available grassy fuel would deplete N reserves in these savannas, unless there are other sources of biologically fixed N, which are unknown at present.  相似文献   

2.
3.
Abstract Seasonal changes of weather and fuels in the wet-dry tropics are dramatic; fires follow suit. In this paper, we examine quantitatively rainfall, evaporation, wind, temperature and humidity information, and indices derived from them, for Kapalga Research Station and nearby Jabiru in World Heritage Kakadu National Park, Northern Australia. At Kapalga, the average annual rainfall of about 1200mm mostly falls during a 6 month wet season. Grasses, green in the wet, begin to desiccate during the early dry season. Perennial grasses cure more slowly than the annuals, and grasses in drainages cure later than those on ridges. Fire weather is usually most severe in September-October (late dry season) and least severe in January-February (late wet season). As the dry season progresses to its peak, daily wind patterns change, daily maximum temperatures increase to an average of 36°C, dew points drop to a minimum, and soil moisture is severely depleted. In the early dry season (cf. later), fires have a greater tendency to go out at night compared with later perhaps because winds then are calmer, fuels are more discontinuous, and relights from burning logs are less likely to occur. Fire weather in the north of Australia appears less severe than that in the southeast of the continent where socially disastrous fires occur periodically.  相似文献   

4.
    
Aim To evaluate the hypothesis that geomorphometric parameters of upper montane Andean environments have an important influence on the regional fire ecology and consequently play a role in the spatial distribution of ‘remnant’ tree islands dominated by Polylepis. Location A glacial landscape located between 3600 and 4400 m elevation in Cajas National Park, south‐western Ecuador. Methods The eigenvalue ratio method was used to evaluate the regional geomorphometric parameters of a 30‐m digital elevation model for Cajas National Park. The landscape character was evaluated by quantifying the topographic roughness, organization, and gradient. This information was used to determine the spatial correlations between terrain characteristics and the distribution of tree islands in the region. Results We demonstrate a strong spatial correlation between areas of high topographic roughness and gradient, and the locations of the major tree islands. We find that there is a distinctive relationship between the topographic roughness and organization in the vicinity of the tree islands (e.g. increased upslope roughness and decreased topographic grain strength) that substantiates the notion that the tree islands are located in relatively inaccessible topography. Main conclusions In the northern and central Andes, the location of Polylepis‐dominated ‘forest islands’ has been shown to be a function of climate, terrain characteristics, and anthropogenic disturbances. Although the relative importance of various ecological factors has been debated, it remains clear that fires have exerted a strong influence on these ecosystems. Other authors have noted that tree islands are more likely to occur at the base of cliffs, above moist areas, and in other areas where fires do not burn frequently. Our results corroborate these observations, and demonstrate that the occurrence of Polylepis patches is strongly correlated with specific combinations of terrain features. Although we do not discount the importance of other factors in determining the spatial position and areal extent of these forests, we demonstrate strong support for fire‐related hypotheses.  相似文献   

5.
  总被引:1,自引:0,他引:1  
A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium‐spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006–2008. Total carbon consumed during the large fire year (2.72 × 106 ha burned) was 64.7 Tg C, and the average carbon consumption during the small fire years (0.09 × 106 ha burned) was 1.3 Tg C. Uncertainties for the annual carbon emissions ranged from 13% to 21%. Carbon consumed from burning of black spruce forests represented 76% of the total during large fire years and 57% during small fire years. This was the result of the widespread distribution of black spruce forests across the landscape and the deep burning of the surface organic layers common to these ecosystems. Average carbon consumed was 3.01 kg m?2 during the large fire year and 1.69 kg m?2 during the small fire years. Most of the carbon consumption was from burning of ground layer fuels (85% in the large fire year and 78% in small fire years). Most of the difference in average carbon consumption between large and small fire years was in the consumption of ground layer fuels (2.60 vs. 1.31 kg m?2 during large and small fire years, respectively). There was great variation in average fuel consumption between individual fire events (0.56–5.06 kg m?2) controlled by variations in fuel types and topography, timing of the fires during the fire season, and variations in fuel moisture at the time of burning.  相似文献   

6.
Bowman et al. (Journal of Biogeography, 2008, 35 , 1976–1988) aimed to explain observed increases in woody cover on floodplains and savannas of Kakadu National Park using estimates of buffalo (Bubalus bubalis) density as a causal variable. They found that buffalo were a minor model variable and concluded that buffalo are ‘not a major driver of floodplain and eucalypt dynamics’. However, the authors mislabelled the historical density of buffalo on their site, citing a period as high density instead of low density. Further, their results were not contextualized within the substantial body of scientific and historical evidence of the buffalo’s strong influence on vegetation in Kakadu. The authors instead postulated three unanalysed drivers of observed patterns of change: fire regime, rainfall and atmospheric CO2. We suggest that further analyses of change in woody vegetation should make use of accurate historical records of grazers as well as available data sets on fire history.  相似文献   

7.
8.
Protected areas remain a cornerstone for global conservation. However, their effectiveness at halting biodiversity decline is not fully understood. Studies of protected area benefits have largely focused on measuring their impact on halting deforestation and have neglected to measure the impacts of protected areas on other threats. Evaluations that measure the impact of protected area management require more complex evaluation designs and datasets. This is the case across realms (terrestrial, freshwater, marine), but measuring the impact of protected area management in freshwater systems may be even more difficult owing to the high level of connectivity and potential for threat propagation within systems (e.g. downstream flow of pollution). We review the potential barriers to conducting impact evaluation for protected area management in freshwater systems. We contrast the barriers identified for freshwater systems to terrestrial systems and discuss potential measurable outcomes and confounders associated with protected area management across the two realms. We identify key research gaps in conducting impact evaluation in freshwater systems that relate to three of their major characteristics: variability, connectivity and time lags in outcomes. Lastly, we use Kakadu National Park world heritage area, the largest national park in Australia, as a case study to illustrate the challenges of measuring impacts of protected area management programmes for environmental outcomes in freshwater systems.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Aim To explore: (1) the relative influences of site conditions, especially moisture relations, on pathways and rates of monsoon rain forest seedling and sapling regeneration, especially of canopy dominants, in northern Australia; and (2) contrasts between regeneration syndromes of dominant woody taxa in savannas and monsoon rain forest. Location Four monsoon rain forest sites, representative of regional major habitat and vegetation types, in Kakadu National Park, northern Australia. Methods A decadal study involved: (1) initial assessment over 2.5 years to explore within‐year variability in seed rain, dormant seed banks and seedling (< 50 cm height) dynamics; and (2) thereafter, monitoring of seedling and sapling (50 cm height to 5 cm d.b.h.) dynamics undertaken annually in the late dry season. On the basis of observations from this and other studies, regeneration syndromes of dominant monsoon rain forest taxa are contrasted with comparable information for dominant woody savanna taxa, Eucalyptus and Corymbia especially. Results Key observations from the monsoon rain forest regeneration dynamics study component are that: (1) peak seed rain inputs of rain forest taxa were observed in the wet season at perennially moist sites, whereas inputs at seasonally dry sites extended into, or peaked in, the dry season; (2) dormant soil seed banks of woody rain forest taxa were dominated by pioneer taxa, especially figs; (3) longevity of dormant seed banks of woody monsoon rain forest taxa, including figs, was expended within 3 years; (4) seedling recruitment of monsoon rain forest woody taxa was derived mostly from wet season seed rain with limited inputs from soil seed banks; (5) at all sites rain forest seedling mortality occurred mostly in the dry season; (6) rain forest seedling and sapling densities were consistently greater at moist sites; (7) recruitment from clonal reproduction was negligible, even following unplanned low intensity fires. Main conclusions By comparison with dominant savanna eucalypts, dominant monsoon rain forest taxa recruit substantially greater stocks of seedlings, but exhibit slower aerial growth and development of resprouting capacity in early years, lack lignotubers in mesic species, and lack capacity for clonal reproduction. The reliance on sexual as opposed to vegetative reproduction places monsoon rain forest taxa at significant disadvantage, especially slower growing species on seasonally dry sites, given annual–biennial fires in many north Australian savannas.  相似文献   

10.
    
Assessments of ecosystem restoration have traditionally focused on soil and vegetation, often with little consideration of fauna. It is critical to include fauna in such assessments, not just because of their intrinsic biodiversity value but also because of the many ecological roles that animals play in restoration processes. However, a widely accepted framework for specifying faunal standards for restoration is lacking. Here we present such a framework, incorporating: (1) the identification of appropriate reference conditions; (2) the taxa to be targeted for assessment; (3) the attributes of these taxa to be measured; (4) acceptable similarity with reference conditions; and (5) robust sampling methodologies for reliable assessment. We illustrate this framework using the restoration program at Ranger Uranium Mine in the Australian seasonal tropics, which aims to establish an environment similar to the surrounding World Heritage-listed Kakadu National Park, corresponding to “full recovery” according to Society for Ecosystem Restoration's standards. Our case study has especially high restoration standards, but our framework has wide applicability to the specification of faunal standards for ecosystem restoration.  相似文献   

11.
    
Aim Fire is a key agent in savanna systems, yet the capacity to predict fine‐grained population phenomena under variable fire regime conditions at landscape scales is a daunting challenge. Given mounting evidence for significant impacts of fire on vulnerable biodiversity elements in north Australian savannas over recent decades, we assess: (1) the trajectory of fire‐sensitive vegetation elements within a particularly biodiverse savanna mosaic based on long‐term monitoring and spatial modelling; (2) the broader implications for northern Australia; and (3) the applicability of the methodological approach to other fire‐prone settings. Location Arnhem Plateau, northern Australia. Methods We apply data from long‐term vegetation monitoring plots included within Kakadu National Park to derive statistical models describing the responses of structure and floristic attributes to 15 years of ambient (non‐experimental) fire regime treatments. For a broader 28,000 km2 region, we apply significant models to spatial assessment of the effects of modern fire regimes (1995–2009) on diagnostic closed forest, savanna and shrubland heath attributes. Results Significant models included the effects of severe fires on large stems of the closed forest dominant Allosyncarpia ternata, stem densities of the widespread savanna coniferous obligate seeder Callitris intratropica, and fire frequency and related fire interval parameters on numbers of obligate seeder taxa characteristic of shrubland heaths. No significant relationships were observed between fire regime and eucalypt and non‐eucalypt adult tree components of savanna. Spatial application of significant models illustrates that more than half of the regional closed forest perimeters, savanna and shrubland habitats experienced deleterious fire regimes over the study period, except in very dissected terrain. Main conclusions While north Australia’s relatively unmodified mesic savannas may appear structurally intact and healthy, this study provides compelling evidence that fire‐sensitive vegetation elements embedded within the savanna mosaic are in decline under present‐day fire regimes. These observations have broader implications for analogous savanna mosaics across northern Australia, and support complementary findings of the contributory role of fire regimes in the demise of small mammal fauna. The methodological approach has application in other fire‐prone settings, but is reliant on significant long‐term infrastructure resourcing.  相似文献   

12.
    
Previous analyses of historical aerial photography and satellite imagery have shown thickening of woody cover in Australian tropical savannas, despite increasing fire frequency. The thickening has been attributed to increasing precipitation and atmospheric CO2 enrichment. These analyses involved labour‐intensive, manual classification of vegetation, and hence were limited in the extent of the areas and the number of measurement times used. Object‐based, semi‐automated classification of historical sequences of aerial photography and satellite imagery has enabled the spatio‐temporal analysis of woody cover over entire landscapes, thus facilitating measurement, monitoring and attribution of drivers of change. Using this approach, we investigated woody cover change in 4000 ha of intact mesic savanna in the Ranger uranium lease and surrounding Kakadu National Park, using imagery acquired on 10 occasions between 1950 and 2016. Unlike previous studies, we detected no overall trend in woody cover through time. Some variation in cover was related to rainfall in the previous 12 months, and there were weak effects of fire in the year of image acquisition and the antecedent 4 years. Our local‐scale study showed a mesic eucalypt savanna in northern Australia has been resilient to short‐term variation in rainfall and fire activity; however, changes in canopy cover could have occurred in other settings. When applying this semi‐automated approach to similar studies of savanna dynamics, we recommend maximising the time depth and number of measurement years, standardising the time of year for image acquisition and using many plots of 1 ha in area, rather than fewer, larger plots.  相似文献   

13.
Abstract The native annual Sorghum populations of the Australian wet-dry tropics are highly resilient to dry season fires. During the early wet season, however, fires that occur after the new grass population has emerged can cause catastrophic population crashes. We examined savanna plots that had been burnt in this way, and compared them with adjacent unburnt plots. We found that Sorghum densities in the burnt plots were lower on average by a factor of 10, but that some fires had reduced the density only to one-third of the unburnt plots. It is not clear whether these differences relate directly to site or seasonal factors, or to differences in the way the burning was carried out. Other vegetation components responded to the fires differently: forbs (dicotyledonous herbs) increased in cover, while perennial grasses, woody plants, and overall species richness, were not significantly affected. The amount of leaf litter declined. A population model for Sorghum based on the demography of unburnt populations predicted that they should recover from a wet season burn, taking 7–16 years to return to normal densities. However, the actual field populations did not seem to be recovering, suggesting that wet season fires not only lower densities, but may also fundamentally change population processes in these annual grasses.  相似文献   

14.
Indigenous peoples have been using fire in the cerrado (savannas) of Brazil as a form of management for thousands of years, yet we have little information on why, when and how these fire practices take place. The aim of this paper was to explore the traditional use of fire as a management tool by the Krahô indigenous group living in the north-eastern region of Tocantíns state, Brazil. The results indicate that the Krahô burn for a variety of reasons throughout the dry season, thereby producing a mosaic of burned and unburned patches in the landscape. The paper discusses this burning regime in the context of contemporary issues regarding fire management, and in the face of changing perceptions to fire by the Krahô themselves.  相似文献   

15.
16.
    
Megaherbivores play a critical role in the ecology of African savannas and grasslands. In addition, these systems are forecast to experience more frequent and severe droughts as a product of changes in the global climate. Thus, the continued conservation of megaherbivores and their associated ecosystems will require a better understanding of how megaherbivores respond to drought by shifting their movement, diet and social behaviour. We address this need by investigating the factors affecting changes in the abundance of common hippopotamus (Hippopotamus amphibius; hereafter: ‘hippos’) throughout the six major rivers of Kruger National Park, South Africa, during and following the severe drought of 2015/2016. Specifically, we aimed to understand the role of two environmental characteristics that have relevance to hippos and that changed in response to drought: vegetation condition and the extent of pooled surface water. In addition, we investigated the extent to which pre-drought density affected changes in hippo abundance. Although vegetation and daytime refugia both appeared to influence pre-drought hippo abundance, these factors were less important to the change in hippo abundance related to the drought. Instead, the response to drought was most strongly related to the pre-drought abundance of hippos, where river segments supporting more than 50 individuals prior to the drought in 2015 decreased by more than half on average. Furthermore, we show that the degree of aggregation decreased from 2015 to 2016 because of the drought, but then began to increase again as the rains returned in 2017. Our results suggest that in addition to the large pools that support large aggregations of hippos in typical years, additional smaller pools are likely important for accommodating this drought-induced dispersion. However, maintaining this distribution of pools will likely become more challenging as southern Africa's population and water demands increase.  相似文献   

17.
    
The manipulation of landscape fire to maintain biodiverse, self‐sustaining ecosystems in flammable landscapes is rarely considered by restoration ecologists. Fire regimes can interact with ecological processes, food webs, and biodiversity in complex ways (here called pyrodiversity) and understanding these complexities could be used to promote restoration and resilience. We illustrate this using an example from northern Australia. Understanding and using pyrodiversity in ecological restoration programs will be intellectually and financially challenging. In Australia, the considerable technical and financial resources of the mining industry could support such restoration programs, yet redirecting these resources from the current narrow focus on restoring native vegetation cover at the mine‐affected site requires overcoming entrenched attitudes among policymakers and restoration ecologists.  相似文献   

18.
青藏高原是我国重要生态安全屏障,保有大量重要的受人类活动干扰较小的自然生态系统。但近年来受社会经济发展和气候变化的影响,高原生态系统面临退化风险。为了更好地守护地球第三极,第二次青藏科考提出建立青藏高原国家公园群的科学构想。为了全面掌握人类胁迫和气候变化背景下,青藏高原生态系统完整性维持情况,并识别生态系统完整性维持较好的区域,为青藏高原国家公园群的规划布局提供支撑,研究基于对生态系统完整性内涵的理解以及青藏高原生态系统特征,借鉴加拿大国家公园生态系统完整性评估框架,构建了\"格局-质量-功能-问题-压力\"生态系统完整性远程评估框架,对青藏高原生态系统完整性进行了综合评估并分析了其空间格局特征。结果显示:青藏高原整体维持了较好的生态系统完整性,分别有3.52%、7.51%和70.71%的区域生态系统完整性等级为优、良和中,但受人类胁迫影响,部分区域生态系统完整受到破坏,分别有18.17%和0.10%的区域生态系统完整性等级为较差和极差。从空间上看,青藏高原东部地区生态系统完整性整体高于西部地区。从生态系统完整性保护的角度看,青藏高原可用于建设国家公园的备选区数量多、分布广,且呈现大面积连片分布的格局。目前正在开展的三江源、祁连山、大熊猫、普达措等国家公园体制试点区均具有较高的生态系统完整性。为了加快推动生态系统完整性高的区域保护,根据青藏高原国家公园潜在建设区的生态系统完整性指数结果,建议优先启动雅鲁藏布大峡谷、色林错-普若岗日、独龙江三江并流、若尔盖、贡嘎山、稻城亚丁等国家公园建设,待条件成熟后,再逐步启动其他具有景观、文化价值的国家公园建设。  相似文献   

19.
    
In this study, systematic variation in tree morphology across a rainfall gradient in Australia's tropical savanna biome and its implications for carbon stocks and dynamics were quantified. The aim was to support efforts to manage fire regimes to increase vegetative carbon stocks as a greenhouse gas mitigation strategy. The height of trees for a given trunk diameter declines with decreasing rainfall from 2000 to 300 mm and increasing dry season length across the Australian savanna biome. It is likely that increasing dry season length is the main driver of this decline rather declining rainfall per se. By taking account of the response of total basal area to rainfall and soil type, stand structure, and tree height and diameter relationships, the carbon stocks in live trees were estimated to decline from about 34 t ha?1 in the wetter savannas to 6 t ha?1 in the drier savannas. These values are broadly consistent with field‐based estimates. Because of the declining ratio of height to trunk diameter, trees of a given diameter in drier regions will be more likely to be killed by fires of a given intensity than trees in wetter regions. Thus single fires of given intensity are likely to have a greater proportionate impact on live tree carbon stock in drier savannas, but a much greater absolute impact in wetter savannas due to the greater total carbon stock. Projected decreases in early wet season rainfall under climate change scenarios, despite projections of little change in total precipitation in northern Australia, may lead to decreased carbon stock in live trees through two mechanisms: a reduction in total basal area and decreases in tree height for given trunk diameters.  相似文献   

20.
    
Aim To describe patterns of tree cover in savannas over a climatic gradient and a range of spatial scales and test if there are identifiable climate‐related mean structures, if tree cover always increases with water availability and if there is a continuous trend or a stepwise trend in tree cover. Location Central Tropical Africa. Methods We compared a new analysis of satellite tree cover data with botanical, phytogeographical and environmental data. Results Along the climatic transect, six vegetation structures were distinguished according to their average tree cover, which can co‐occur as mosaics. The resulting abrupt shifts in tree cover were not correlated to any shifts in either environmental variables or in tree species distributions. Main conclusions A strong contrast appears between fine‐scale variability in tree cover and coarse‐scale structural states that are stable over several degrees of latitude. While climate parameters and species pools display a continuous evolution along the climatic gradient, these stable structural states have discontinuous transitions, resulting in regions containing mosaics of alternative stable states. Soils appear to have little effect inside the climatic stable state domains but a strong action on the location of the transitions. This indicates that savannas are patch dynamics systems, prone to feedbacks stabilizing their coarse‐scale structure over wide ranges of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号