首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eastern curlews Numenius madagascariensis spending the nonbreeding season in eastern Australia foraged on three intertidal decapods: soldier crab Mictyris longicarpus, sentinel crab Macrophthalmus crassipes and ghost‐shrimp Trypaea australiensis. Due to their ecology, these crustaceans were spatially segregated (=distributed in ‘patches’) and the curlews intermittently consumed more than one prey type. It was predicted that if the curlews behaved as intake rate maximizers, the time spent foraging on a particular prey (patch) would reflect relative availabilities of the prey types and thus prey‐specific intake rates would be equal. During the mid‐nonbreeding period (November–December), Mictyris and Macrophthalmus were primarily consumed and prey‐specific intake rates were statistically indistinguishable (8.8 versus 10.1 kJ×min?1). Prior to migration (February), Mictyris and Trypaea were hunted and the respective intake rates were significantly different (8.9 versus 2.3 kJ×min?1). Time allocation to Trypaea‐hunting was independent of the availability of Mictyris. Thus, consumption of Trypaea depressed the overall intake rate. Six hypotheses for consuming Trypaea before migration were examined. Five hypotheses: the possible error by the predator, prey specialization, observer overestimation of time spent hunting Trypaea, supplementary prey and the choice of higher quality prey due to a digestive bottleneck, were deemed unsatisfactory. The explanation for consumption of a low intake‐rate but high quality prey (Trypaea) deemed plausible was diet optimisation by the curlews in response to the pre‐migratory modulation (decrease in size/processing capacity) of their digestive system. With a seasonal decrease in the average intake rate, the estimated intake per low tide increased from 1233 to 1508 kJ between the mid‐nonbreeding and pre‐migratory periods by increasing the overall time spent on the sandflats and the proportion of time spent foraging.  相似文献   

2.
1. The variability in the stable isotope signatures of carbon and nitrogen (δ13C and δ15N) in different phytoplankton taxa was studied in one mesotrophic and three eutrophic lakes in south‐west Finland. The lakes were sampled on nine to 16 occasions over 2–4 years and most of the time were dominated by cyanobacteria and diatoms. A total of 151 taxon‐specific subsamples covering 18 different phytoplankton taxa could be isolated by filtration through a series of sieves and by flotation/sedimentation, followed by microscopical identification and screening for purity. 2. Substantial and systematic differences between phytoplankton taxa, seasons and lakes were observed for both δ13C and δ15N. The values of δ13C ranged from ?34.4‰ to ?5.9‰ and were lowest in chrysophytes (?34.4‰ to ?31.3‰) and diatoms (?30.6‰ to ?26.6‰). Cyanobacteria were most variable (?32.4‰ to ?5.9‰), including particularly high values in the nostocalean cyanobacterium Gloeotrichia echinulata (?14.4‰ to ?5.9‰). For δ13C, the taxon‐specific amplitude of temporal changes within a lake was usually <1–8‰ (<1–4‰ for microalgae alone and <1–8‰ for cyanobacteria alone), whereas the amplitude among taxa within a water sample was up to 31‰. 3. The values of δ15N ranged from ?2.1‰ to 12.8‰ and were high in chrysophytes, dinophytes and diatoms, but low in the nitrogen‐fixing cyanobacteria Anabaena spp., Aphanizomenon spp. and G. echinulata (?2.1‰ to 1.6‰). Chroococcalean cyanobacteria ranged from ?1.4‰ to 8.9‰. For δ15N, the taxon‐specific amplitude of temporal changes within a lake was 2–6‰, (2–6‰ for microalgae alone and 2–4‰ for cyanobacteria alone) and the amplitude among taxa within a water sample was up to 11‰. 4. The isotopic signatures of phytoplankton changed systematically with their physical and chemical environment, most notably with the concentrations of nutrients, but correlations were non‐systematic and site‐specific. 5. The substantial variability in the isotopic signatures of phytoplankton among taxa, seasons and lakes complicates the interpretation of isotopic signatures in lacustrine food webs. However, taxon‐specific values and seasonal patterns showed some consistency among years and may eventually be predictable.  相似文献   

3.
1. Isotopic signatures (δ15N and δ13C) from young‐of‐the‐year (YOY) yellow perch (Perca flavescens) were collected over the initial 4 month summer growing period from three separate and distinctive sites in northern Alberta, Canada. Data were analysed to test the hypotheses that there are within‐ and among‐population differences in the patterns of isotopic δ15N and δ13C change over the growing season, and that observed isotopic dilution and/or enrichment patterns were influenced by site‐specific physical and chemical factors. 2. Increases in δ15N relative to spawned egg masses were observed in immediate posthatch (emergent) YOY and attributed to enrichment associated with the assimilation of yolk during embryonic development. 3. Posthatch dilution of YOY δ15N signatures associated with ontogenetic dietary shifts from yolk to exogenous feeding and zooplanktivory to benthivory occurred at all sites and was associated at most sites with a concomitant increase in δ13C. 4. The rate and pattern of δ15N dilution and δ13C enrichment observed for the study populations varied between and within sites and depended on maternal trophic status and timing of ontogenetic dietary shifts, as determined by prey availability and site‐specific biogeochemical factors. 5. Comparisons of isotopic dilution patterns among species, using results from this study and literature‐derived values, indicated that dilution rates and patterns are species dependent and may vary in relation to key life‐history events. 6. Seasonal and spatial isotopic variability among populations and between species complicates field sampling. In particular, the connectivity to site‐specific conditions found here suggests that for locally resident juvenile fishes, spatial, as well as temporal variability must be included in isotopic sampling programmes designed to characterise littoral zone foodweb relationships.  相似文献   

4.
This study investigated whether surface hole counts could be used as a reliable estimate of density of the ghost shrimps Trypaea australiensis Dana 1852 and Biffarius arenosus Poore 1975 (Decapoda, Thalassinidea) in south eastern Australia. The relationship between the number of holes and the number of ghost shrimps was explored in two ways. Resin casts were used to document any changes in the number of burrow openings per shrimp burrow over time. Manual suction pumping (bait pumping) within a given mudflat area was used to directly compare the number of holes on the sediment surface with the number of ghost shrimps occupying the corresponding volume of sediment. Resin casting showed that throughout the year, the burrows of T. australiensis consistently had an average of two openings, whereas the burrows of B. arenosus showed much greater variability over time with two to four openings per burrow. Overall, a significant relationship between the number of holes and the number of ghost shrimps (mixed species populations) was found, with 2.1 burrow openings for each ghost shrimp. However, some temporal and spatial variation was seen in this relationship. We suggest that the hole count method may be reliable in estimating ghost shrimp densities with restricted use and site specific validation based on some limitations found in this study. Handling editor: K. Martens  相似文献   

5.
The effect of digestion by a predatory fish (largemouth bass Micropterus salmoides) on stable isotopic (δ13C and δ18O) and trace elemental (Sr:Ca and Ba:Ca) compositions of prey fish (bluegill Lepomis macrochirus) otoliths was investigated in a laboratory experiment. Trace element and stable‐isotopic signatures of L. macrochirus otoliths were not significantly altered for up to 16 h after L. macrochirus were consumed by M. salmoides. Prey fish otoliths recovered from predator digesta can retain environmental stable isotopic and trace elemental signatures, suggesting that determination of environmental history for prey fishes by stable‐isotope and trace‐element analysis of otoliths recovered from stomachs of piscivorous fishes will be feasible.  相似文献   

6.
The stable isotopes of nitrogen (δ15N) and carbon (δ13C) provide powerful tools for quantifying trophic relationships and carbon flow to consumers in food webs; however, the isotopic signatures of organisms vary within a lake. Assessment of carbon and nitrogen isotopic signatures in a suite of plants, invertebrates, and fishes in Lake Kyoga, indicated significant variation between two sites for δ13C (paired t = 6.305; df = 14, P < 0.001 and δ15N paired t = 1.292; df = 14; P < 0.05). The fish fauna in Bukungu was generally more 13C enriched (mean δ13C = –16.37 ± 1.64‰) than in Iyingo (mean δ13C = –20.80 ± 2.41‰) but more δ15N depleted (mean δ15N = 5.57 ± 0.71‰) than in Iyingo (mean δ15N = 6.92 ± 0.83‰). The simultaneous shifts in phytoplankton and consumer signatures confirmed phytoplankton as the major source of carbon for the food chain leading to fish. Limited sampling coverage within lakes may affect lake wide stable isotope signatures, and the same error is transferred into trophic position estimation. Consideration of potential intra‐lake spatial variability in isotope ratios and size is essential in evaluating the spatial and trophic structure of fish assemblages.  相似文献   

7.
Differences between the stable isotopic ratios (δ13C and δ15N) of two tissues (blood and muscle) from four species of East African coral reef parrotfishes (family: Labridae, tribe: Scarini) were analysed across a broad spectrum of body sizes. Comparison of isotopic ratios between the tissues allowed the assessment of using blood as an alternative tissue to muscle. In 2010–2011, constant differences between tissues (δblood minus δmuscle) were found across a broad range of sampled fish lengths. Linear relationships between the tissues, specific for an isotope, indicate that constants could be generated for converting blood isotope into muscle isotope values. Only one species, Chlorurus sordidus, displayed an inconsistent difference between tissues in δ15N, indicating that this ratio was dependent on fish length. The δ13C of both tissues was positively related linearly to fish length for three species, while δ15N showed no relationship with body length. The results are interpreted as indicating dietary consistency over days to weeks, the time of tissue turnover for blood and muscle, respectively. Lastly, differences among the species, even closely related species, show that the generation of tissue conversion constants is species‐specific.  相似文献   

8.
Food chains culminating with temperate insectivorous passerines are well described, yet whether trophic webs can be site‐specific remains a largely unexplored question. In the case of site‐ or habitat‐specificity of food webs, stable isotope signatures of bird feathers may enable assignment of unmarked individuals to a site or a habitat of origin. We address this question in landscapes that include contrasting forest habitat patches with either deciduous Downy Oak Quercus humilis or evergreen Holm Oak Quercus ilex as dominant tree species. First, we examine the spatial variation across habitats and sites in the stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) along the oak leaf–Tortrix moth Tortrix viridana caterpillar–Blue Tit Cyanistes caeruleus food chain. Secondly, we assess whether the isotopic signatures allow for correct assignment of individual birds to their site or habitat of origin. At the scale of the landscape, stable isotope values enabled identification of the different components of the Blue Tit food chain: from oak leaves to Blue Tit nestlings and yearling birds. However, isotopic signatures were site‐specific (i.e. geographical) more than habitat‐specific (i.e. deciduous vs. evergreen oaks). Discriminant analyses correctly assigned 85% of nestlings and 83% of resident yearling birds, indicating a pronounced effect of site on Blue Tit feather isotopic signatures. We thereby demonstrate that isotopes reflect a stronger association of locally born birds to the local features of their habitat than that of un‐ringed yearling birds, whose plumage may have grown while in a wider geographical area. This study provides evidence of site‐specific isotopic signatures from oak leaves to Blue Tit feathers at a fine spatial scale.  相似文献   

9.
Stable‐isotope ratios (δ15N and δ13C) and diet of the red mullets Mullus barbatus and Mullus surmuletus were analysed in two zones differently subjected to the Rhône River runoff in the Gulf of Lions (north‐west Mediterranean sea) in May and October 2004. δ15N and δ13C increased significantly with fish size in M. barbatus in both zones and seasons, whereas no significant trend was evidenced in M. surmuletus. A clear size‐related shift in diet was observed in M. barbatus, with an increase in polychaete and shrimp consumption with size and a decrease in small crustacean consumption. In M. surmuletus, a diet shift was observed only between medium and large individuals. Large M. surmuletus preyed on shrimps, polychaetes, bivalves, ophiurids and amphipods, and ingested prey of lower mean mass than M. barbatus of similar size. Difference in size‐related increase in δ15N between the two mullid fish species were related to difference of trophic level of their main prey. Sub‐surface deposit‐feeding polychaetes, carnivorous polychaetes, shrimps and brachyurans presented higher δ15N values than bivalves, small crustaceans and ophiurids. The lower δ13C values observed in M. barbatus compared to M. surmuletus were related to a higher consumption of sub‐surface polychaetes in the former species. Significantly, lower δ13C were recorded in fishes collected off the Rhône River, particularly in spring, suggesting an influence of river inputs as a source of particular organic matter for mullids in this zone after the flooding season. Thus, these closely related sympatric fish species displayed diet divergences that were reflected in their stable isotopic signatures.  相似文献   

10.
The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well‐preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13C) analysis of bulk decapod cuticle yielded similar mean δ13C values for both taxa (?25.1‰ and ?26‰, respectively). Sedimentary biomarkers were composed of n‐alkanes from C16 to C36, with the short‐chain n‐alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian–early Maastrichtian and demonstrates for the first time that organic δ13C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.  相似文献   

11.
Burns  Adrienne  Walker  Keith F. 《Hydrobiologia》2000,437(1-3):83-90
Stable water levels and turbidity associated with flow regulation in the River Murray have promoted the growth of filamentous green algae and Cyanobacteria in biofilms on submerged wood. We investigated the assimilation of biofilm algae by two dominant consumers, the decapod crustaceans Macrobrachium australiense (Palaemonidae) and Paratya australiensis (Atyidae), in two river reaches differing in the extent of floodplain development, hence wetland connectivity. Filamentous Cyanobacteria, a major part of the biofilms assimilated in combination with other foods, were up to 83% of the algal component of the gut content volume of P. australiensis and 44% that of M. australiense. Cyanobacteria have not previously been reported as a major source of nutrition for adult decapods. There was little difference between the stable isotopic signatures (13C/12C, 15N/14N) of the two decapod species, or between decapods in the two reaches. Coarse and fine particulate organic matter from the gorge had similar isotopic signatures to those from upstream and so were likely derived from macrophyte detritus rather than local willows. Red gum leaves and wood were too depleted in both 13C and 15N to register in the diets of either decapod in gorge or floodplain reaches. The most likely food sources for the decapods are littoral plants in the gorge reach and fine particulate organic matter material processed upstream. This is consistent with current hypotheses of organic matter flux in large river systems.  相似文献   

12.
The oxygen stable isotope composition (δ18O) of CO2 is a valuable tool for studying the gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records the isotopic signal of water pools subjected to precipitation and evaporation events. The δ18O of the surface soil net CO2 flux is dominated by the physical processes of diffusion of CO2 into and out of the soil and the chemical reactions during CO2–H2O equilibration. Catalytic reactions by the enzyme carbonic anhydrase, reducing CO2 hydration times, have been proposed recently to explain field observations of the δ18O signatures of net soil CO2 fluxes. How important these catalytic reactions are for accurately predicting large‐scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain because of the lack of field data. In this study, we determined the δ18O signatures of net soil CO2 fluxes from soil chamber measurements in a Mediterranean forest. Over the 3 days of measurements, the observed δ18O signatures of net soil CO2 fluxes became progressively enriched with a well‐characterized diurnal cycle. Model simulations indicated that the δ18O signatures recorded the interplay of two effects: (1) progressive enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the isotopic exchange between CO2 and soil water, amplifying the contributions of ‘atmospheric invasion’ to net signatures. We conclude that there is a need for better understanding of the role of enzymatic reactions, and hence soil biology, in determining the contributions of soil fluxes to oxygen isotope signals in atmospheric CO2.  相似文献   

13.
The rockhopper penguin (Eudyptes chrysocome) is a conspicuous apex marine predator that has experienced marked population declines throughout most of its circumpolar breeding distribution. The cause(s) for the declines remain elusive, but the relatively large spatio‐temporal scale over which population decreases have occurred implies that ecosystem‐scale, at‐sea factors are likely to be involved. We employ stable isotope analyses of carbon (13C/12C, expressed as δ13C) and nitrogen (15N/14N, δ15N) in time‐series of rockhopper penguin feather samples, dating back to 1861, in order to reconstruct the species' ecological history. Specifically, we examine whether rockhopper penguin population decline has been associated with a shift towards lower primary productivity in the ecosystem in which they feed, or with a shift to a diet of lower trophic status and lower quality, and we use long‐term temperature records to evaluate whether shifts in isotope ratios are associated with annual variations in sea surface temperature. Having controlled temporally for the Suess Effect and for increases in CO2 concentrations in seawater, we found that overall, δ13C signatures decreased significantly over time in rockhopper penguins from seven breeding sites, supporting the hypothesis that decreases in primary productivity, and hence, carrying capacity, for which δ13C signature is a proxy, have been associated with the decline of penguin populations. There was some evidence of a long‐term decline in δ15N at some sites, and strong evidence that δ15N signatures were negatively related to sea surface temperatures across sites, indicative of a shift in diet to prey of lower trophic status over time and in warm years. However, a site‐by‐site analysis revealed divergent isotopic trends among sites: five of seven sites exhibited significant temporal or temperature‐related trends in isotope signatures. This study highlights the utility of stable isotope analyses when applied over relatively long timescales to apex predators.  相似文献   

14.
The carbon isotope composition (δ13C) of C3 ecosystems is sensitive to water availability, and provides important information for the assessment of terrestrial carbon (C) sink/source activity. Here, we report the effects of plant available soil water (PAW) on community 13C signatures of temperate humid grassland. The 5‐year study was conducted on pastures exhibiting a large range of PAW capacity that were located on two site types: peat and mineral soils. The data set included the centennial drought year 2003, and data from wet years (2000 and 2002). Seasonal variation of PAW was modeled using PAW capacity of each pasture, precipitation inputs and evapotranspiration estimates. Community 13C signatures were derived from the δ13C of vegetation and segments of tail switch hair of cattle grown while grazing pastures. Hair 13C signatures provided an assimilation‐weighted 13C signal that integrated both spatial (paddock‐scale) and temporal (grazing season) variation of 13C signatures on a pasture. The δ13C of hair and vegetation increased with decreasing modeled PAW in the same way on mineral and peat soils. But, at a given PAW, the δ13C of hair was 2.6‰ less negative than that of vegetation, reflecting the diet‐hair isotopic shift. Furthermore, the δ13C of hair and vegetation on peat soil pastures was 0.5‰ more negative than on pastures situated on mineral soil. This may have resulted from a ~10 ppm CO2 enrichment of canopy air derived from ongoing peat mineralization. Community‐scale season‐mean 13C discrimination (Δ) exhibited a saturation‐type response towards season‐mean modeled PAW (r2=0.78), and ranged between 19.8‰ on soils with low PAW capacity during the drought year of 2003, and 21.4‰ on soils with high PAW capacity in a wet year. This indicated relatively small variation in season‐mean assimilation‐weighted pi/pa (0.68–0.75) between contrasting sites and years. However, this range is similar to that reported in other studies, which encompass the range from subtropical arid to humid temperate grassland. Furthermore, the tight relationship between season‐mean Δ and modeled mean PAW suggests that PAW may be used as proxy for Δ.  相似文献   

15.
Summary 1. To examine spatial heterogeneity of trophic pathways on a small scale (<5 m diameter), we conducted dual stable isotope (δ13C and δ15N) analyses of invertebrate communities and their potential food sources in three patchy habitats [sphagnum lawn (SL), vascular‐plant carpet (VC) and sphagnum carpet] within a temperate bog (Mizorogaike Pond, Kyoto, Japan). 2. In total, 19 invertebrate taxa were collected from the three habitats, most of which were stenotopic, i.e. collected from a single habitat. Amongst the habitats, significant variation was observed in the isotopic signatures of dominant plant tissues and their detrital matter [benthic particulate organic matter (BPOM)], both of which were potential organic food sources for invertebrates. Site‐specific isotopic variation amongst detritivores was found in δ13C but not in δ15N, reflecting site‐specificity in the isotopic signatures of basal foods. The eurytopic hydrophilid beetle Helochares striatus was found in all habitats, but showed clear site variation in its isotopic signatures, suggesting that it strongly relies on foods within its own habitat. 3. The most promising potential foods for detritivores were the dead leaf stalks of a dominant plant in the VC and BPOM in the SL and carpet. An isotopic mixing model (IsoSource version 1.3.1) estimated that aquatic predators rely on unknown trophic sources with higher δ13C than detritus, whereas terrestrial predators forage on allochthonous as well as autochthonous prey, suggesting that the latter predators might play key roles in coupling between habitats. 4. Our stable isotope approach revealed that immobile detritivores are confined to their small patchy habitats but that heterogeneous trophic pathways can be coupled by mobile predators, stressing the importance of habitat heterogeneity and predator coupling in characterising food webs in bog ecosystems.  相似文献   

16.
Within-lake variability in carbon and nitrogen stable isotope signatures   总被引:3,自引:0,他引:3  
1. We assessed spatial and temporal variation in carbon and nitrogen isotopic signatures in different compartments of a single lake ecosystem. Stable isotope analyses were made on samples of particulate organic matter (POM), zooplankton, periphyton, macrophytes, macroinvertebrates and fish collected from several locations throughout the ice‐free period. 2. No spatial variation in δ13C or δ15N values was found for pelagic samples of POM and zooplankton. However, pelagic δ15N signatures increased steadily through the summer resulting in an almost 6‰ average increase in POM and zooplankton. A concurrent decrease in epilimnetic nitrate concentrations suggested that the increase in δ15N of POM and zooplankton could have resulted from a progressive 15N‐enrichment of the available inorganic nitrogen pool as the size of this pool was reduced. 3. Significant spatial variation in isotopic ratios was observed within littoral and profundal communities. Some spatial differences were likely related to lake‐specific characteristics, such as a major inlet and a small harbour area and some were interconnected with temporal events. 4. Marked differences between spring and autumn δ15N and δ13C values of fish at one site probably reflected a spring spawning immigration from a larger downstream lake and also indicated limited dispersal of these immigrants. 5. Our results indicate that restricted sampling of ecosystem components from lakes may provide misleading single values for the isotope end members needed for quantitative uses of stable isotopes in mixing models and for estimating trophic position. Hence we strongly advise that studies of individual lakes, or multiple lake comparisons, that utilise stable isotope analyses should pay more attention to potential within lake spatial and temporal variability of isotope ratios.  相似文献   

17.
The commercial deep‐sea penaeid shrimp genus Parapenaeus contains 15 species, three subspecies and two forms in the Indo‐West Pacific and the Atlantic. Novel nucleotide sequence data from five different genes (COI, 16S, 12S, NaK and PEPCK) were collected to estimate phylogenetic relationships and taxonomic status amongst all but one subspecies in this genus. The phylogenetic results only support two of the four species groups previously proposed for this genus and indicate an evolution direction of the genital organs from simple to complex. The present results suggest that Parapenaeus originated in the shallow waters of the West Pacific with subsequent migration to the deep sea and the Atlantic. The molecular data reveal that there was probably misidentification of females between Parapenaeus australiensis and Parapenaeus ruberoculatus, with females previously assigned as P. australiensis likely being the females of P. ruberoculatus, while material identified as P. australiensis forma nodosa being the true P. australiensis females. On the other hand, Parapenaeus longipes forma denticulata truly represents a variation of the same species, while the subspecies Parapenaeus fissuroides indicus warrants a specific rank.  相似文献   

18.
Abstract The primary aim of this study was to investigate whether bait harvesting, with all its inherent effects, occurring in the intertidal zone of a subtropical estuary, had an impact on a migratory shorebird, the eastern curlew Numenius madagascariensis. In a large‐scale manipulative study (units of experiment were 1 ha plots), callianassid shrimp Trypaea australiensis populations were harvested simulating the technique (manual pumping) and the levels of harvesting intensity per unit area (347 shrimp per hectare per harvesting event) exhibited by bait‐collectors in SE Australia and South Africa. It was found that at present levels of harvesting intensity per unit area (approximately 1% of standing stock removed per harvesting event) there is no threat to the stocks of Trypaea exploited by the curlews in Moreton Bay, Australia. However, the results show that the curlews themselves apply a considerable predation pressure on Trypaea. Based on the birds' foraging rates and densities, it was estimated that they would consume up to 100% of the initial Trypaea stock over the course of a non‐breeding season (October to March). However, the stable seasonal trend in the density of the size‐cohort of Trypaea preyed upon by the curlews indicates that the existing rates of predation are easily counterbalanced, e.g. through continuous density‐dependent recruitment of these crustaceans. We suggest that this mechanism will provide for a stable foraging environment for both the shorebirds and bait collectors.  相似文献   

19.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

20.
Alteration of the global nitrogen (N) cycle because of human‐enhanced N fixation is a major concern particularly for those ecosystems that are nutrient poor by nature. Because Sphagnum‐dominated mires are exclusively fed by wet and dry atmospheric deposition, they are assumed to be very sensitive to increased atmospheric N input. We assessed the consequences of increased atmospheric N deposition on total N concentration, N retention ability, and δ15N isotopic signature of Sphagnum plants collected in 16 ombrotrophic mires across 11 European countries. The mires spanned a gradient of atmospheric N deposition from about 0.1 up to about 2 g m?2 yr?1. Mean N concentration in Sphagnum capitula was about 6 mg g?1 in less polluted mires and about 13 mg g?1 in highly N‐polluted mires. The relative difference in N concentration between capitulum and stem decreased with increasing atmospheric N deposition, suggesting a possible metabolic mechanism that reduces excessive N accumulation in the capitulum. Sphagnum plants showed lower rates of N absorption under increasing atmospheric N deposition, indicating N saturation in Sphagnum tissues. The latter probably is related to a shift from N‐limited conditions to limitation by other nutrients. The capacity of the Sphagnum layer to filter atmospheric N deposition decreased exponentially along the depositional gradient resulting in enrichment of the mire pore water with inorganic N forms (i.e., NO3?+NH4+). Sphagnum plants had δ15N signatures ranging from about ?8‰ to about ?3‰. The isotopic signatures were rather related to the ratio of reduced to oxidized N forms in atmospheric deposition than to total amount of atmospheric N deposition, indicating that δ15N signature of Sphagnum plants can be used as an integrated measure of δ15N signature of atmospheric precipitation. Indeed, mires located in areas characterized by greater emissions of NH3 (i.e., mainly affected by agricultural activities) had Sphagnum plants with a lower δ15N signature compared with mires located in areas dominated by NOx emissions (i.e., mainly affected by industrial activities).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号