首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
邹慧  杨文斌  朱斌  刘丹一  周密  杨波 《生态学报》2025,45(3):1070-1076
沙漠化是我国乃至全球面临的重大生态问题,沙区水资源问题十分突出。低覆盖度治沙理论依据天然稀疏林密度,提出在降低固沙林覆盖度的基础上,通过改变分布格局能够保持防沙治沙的效益,为沙漠化防治提供了新的思路。给出8了低覆盖度治沙的原理和不同气候区低覆盖度固沙体系典型设计,提出了低覆盖度治沙理论在与传统技术模式结合、羽翼袋沙障、沙地林田草沙水分利用与近自然生态恢复等方面的几种创新实践。实践表明,低覆盖度治沙是用覆盖度15%—25%的固沙林带(沙障)构建的一种复合型固沙植被恢复模式,留有75%-85%的空地或者地带性自然恢复植被带,能够确保沙区的水分平衡和雨养植被的稳定持续发育,对于解决目前沙区水资源承载力不足,固沙林稳定性、可持续性差等问题具有重要意义。今后将进一步加强基于低覆盖度理论的治沙、沙产业相结合的技术示范研究。  相似文献   

2.
张定海  李新荣  陈永乐 《生态学报》2016,36(11):3273-3279
灌木是我国沙漠地区主要的优势植物类型,固沙灌木的存在有益于沙丘的固定进而有利于退化沙漠生态系统的生态恢复。基于腾格里沙漠沙坡头地区50多年的人工植被区长期观测研究,建立生态-水文模型模拟了该地区固沙灌木盖度和深层土壤水分的动态变化过程,结果表明,固沙灌木的建立改变了沙区原有的生态-水文过程,在固沙灌木建立40多年后,固沙灌木的盖度和深层土壤水分达到了新的平衡状态。灌木盖度逐渐稳定在(10±0.9)%左右,而深层土壤水分稳定在(2.58±0.2)%左右。因此,在年均降雨量为186mm的腾格里沙漠沙坡头地区,土壤水分的最大植被承载力为:灌木和生物土壤结皮的盖度分别维持在10%和60%,深层土壤水分维持在3%左右。  相似文献   

3.
    
Nonrainfall water inputs (e.g., fog and dew) are the least studied hydrological components in ecohydrology. The importance of nonrainfall waters on vegetation water status in arid ecosystems is receiving increasing attention. However, a clear understanding on how common plant water status benefits from nonrainfall waters, the impacts of different types of fog and dew events on vegetation water status, and the vegetation uptake mechanisms of nonrainfall waters is still lacking. In this study, we used concurrent leaf and soil water potential measurements from 3 years to investigate the species‐specific capacity to utilize moisture from fog and dew within the Namib Desert. Eight common plant species in the Namib Desert were selected. Our results showed that both fog and dew significantly increased soil water potential. Seven of the eight plant species studied responded to fog and dew events, although the magnitude of the response differed. Plants generally showed stronger responses to fog than to dew. Fog timing seemed to be an important factor determining vegetation response; for example, night fog did not affect plant water potential. We also found that Euclea pseudebenus and Faidherbia albida likely exploit fog moisture through foliar uptake. This study provides a first comprehensive assessment of the effects of nonrainfall waters on plant water status within the Namib Desert. Furthermore, this study highlights the importance of concurrent leaf and soil water potential measurements to identify the pathways of nonrainfall water use by desert vegetation. Our results fill a knowledge gap in dryland ecohydrology and have important implications for other drylands.  相似文献   

4.
    
Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.  相似文献   

5.
Onymacris unguicularis, a fog-basking tenebrionid beetle of the Namib Desert, has mean water influx rates of 49.9 mg H2O/g.d and mean efflux rates of 41.3 mg H2O/g.d with mean mass gain being 10.7 mg/g.d. If only steady-state conditions are considered (no mass change), and passive vapour input subtracted, drinking accounts for 50% of water input. Active beetles must drink in order to maintain water balance, while inactive beetles can maintain water balance either eating seeds or by simply metabolizing fat. Little change is observed in ratios of haemolymph and total body water to dry mass when fogs occur, while significant changes in haemolymph osmotic pressure are associated with fog occurrence.For short periods, O. unguicularis can tolerate dehydration with only slight changes in the ratio of total body water and haemolymph to dry body mass and to haemolymph osmotic pressure. For longer periods however, active beetles must have access to fog water for water balance maintenance. This is probably necessary for reproduction.  相似文献   

6.
Shrubs have invaded extensive areas of grassland in the southwestern United States. The zones of nutrient-rich soil found beneath plant canopies, referred to as “islands of fertility,” are more intense and spaced farther apart in shrubland than in grassland. This difference in the spatial pattern of soil nutrients may reinforce shrub invasion. Changes in water availability in the soil could also influence shrub invasion. Here we compare the spatial patterns of infiltration, defined as the total equivalent water depth entering the soil following individual rainfall events or summed over many events, at adjacent grass- and shrub-dominated sites in the Sevilleta National Wildlife Refuge. We use two infiltration data sets. First, following four rainfall events, we measured soil moisture and wetting front depth at 10-cm intervals along 24-m transects. We estimate infiltration from these data. Second, we use vertical arrays of soil moisture probes to compare infiltration between adjacent canopies and interspaces following 31 storms. In both the grassland and shrubland, infiltration is typically greater beneath plant canopies than beneath interspaces. Canopies are oases where soil moisture is higher than in the surrounding areas. However, infiltration is not greater beneath canopies when surface runoff is limited. In the shrubland, the canopy–interspace infiltration ratio increases as storm size, and therefore runoff, increases. This relationship also exists in the grassland, but it is not as strong or clear. The magnitude of spatial variability of infiltration is similar in shrubland and grassland. In addition, the distance over which infiltration is correlated is approximately 50 cm in both environments. Most of the spatial variability exists between the stem and canopy margin in the shrubland and straddling the canopy margin in the grassland. The most notable difference is that subcanopy oases are spread farther apart in the shrubland because canopies are separated by larger interspaces in this environment. Received 30 October 2001; accepted 1 August 2002.  相似文献   

7.
乌兰布和沙漠典型灌木群落土壤化学计量特征   总被引:6,自引:0,他引:6       下载免费PDF全文
乌兰布和沙漠不同典型灌木群落类型对荒漠土壤质量的改善具有重要的作用,而土壤碳、氮、磷生态化学计量比是体现生态系统变化过程的重要依据。研究不同灌木植被类型对土壤碳、氮、磷含量及其生态化学计量学特征的影响,对于深入认识乌兰布和沙漠典型灌木植被生长与修复对土壤质量的改良,准确评价植被生态环境效益具有重要的现实意义。在乌兰布和沙漠8个主要建群种天然植被类型灌木林地内设置10 m×10 m的标准样方进行调查,在灌丛边缘(东、南、西、北四个方向)进行土壤分层采样,取样深度分别为0-20、20-40、40-60、60-80、80-100 cm,共5层。将相同层次土壤样品充分混合,经四分法取样,风干,过0.15 mm筛用于土壤C、N、P含量的测量,分析不同灌木类型各土层碳、氮、磷含量及其生态化学计量比的垂直分布特征,探寻各指标间的相关关系。结果表明:乌兰布和沙漠地区8种天然灌木林土壤有机C、全N、全P含量整体水平不高,分别为2.45、0.26、0.28 g/kg,均低于全国水平。由C、N、P含量的相关性分析可知三者间呈显著正相关(P < 0.05),且C、N元素含量变化几乎同步,但P元素含量变化滞后于二者。各灌木类型表层(0-20cm)土壤C、N、P含量均较高,各灌木类型土壤有机C、全N含量随着土壤深度的增加呈下降趋势,而不同灌木类型土壤全P含量从上至下分布规律不同,且土层对P含量无显著差异(P > 0.05)。8种典型灌木群落土壤整体C:N、C:P、N:P值(9.41、8.70、0.93)低于全国水平,各灌木类型土壤N:P和C:P随土壤深度而递减,但不同灌木类型土壤C:N随土层深度的变化规律不同。乌兰布和沙漠典型灌木群落土壤碳、氮、磷化学计量特征值均低于全国水平,各灌木类型土壤C、N、N:P和C:P随土壤深度而递减,但不同灌木类型土壤P、C:N随土层深度的变化规律不同。有机C、全N、全P与其化学计量比之间具有非线性耦合关系。C:N和P含量具有较高的稳定性(CV=22.45%和24.39%),C:P和N:P比值是研究区限制性养分判断的重要指标。  相似文献   

8.
The phosphate-solubilizing bacteria (PSB) were enumerated in 52 soil samples collected from agricultural areas at Baghdad. The results revealed that more than 90% of the samples were inhabited with indigenous PSB. The number varied and ranged from 0.012–28.4×104 cell g–1 soil. The correlations between PSB counts and electrical conductivity, available phosphorus, cation-exchange capacity, soil moisture, organic matter and pH were insignificant. Both abundance and numbers of PSB were more pronounced in descending order under vegetables, legumes, grasses, cereal and orchard trees.  相似文献   

9.
Precipitation is a major driver of biological processes in arid and semiarid ecosystems. Soil biogeochemical processes in these water‐limited systems are closely linked to episodic rainfall events, and the relationship between microbial activity and the amount and timing of rainfall has implications for the whole‐system carbon (C) balance. Here, the influences of storm size and time between events on pulses of soil respiration were explored in an upper Sonoran Desert ecosystem. Immediately following experimental rewetting in the field, CO2 efflux increased up to 30‐fold, but generally returned to background levels within 48 h. CO2 production integrated over 48 h ranged from 2.5 to 19.3 g C m−2 and was greater beneath shrubs than in interplant spaces. When water was applied on sequential days, postwetting losses of CO2 were only half a large as initial fluxes, and the size of the second pulse increased with time between consecutive events. Soil respiration was more closely linked to the organic matter content of surface soils than to rainfall amount. Beneath shrubs, rates increased nonlinearly with storm size, reaching an asymptote at approximately 0.5 cm simulated storms. This nonlinear relationship stems from (1) resource limitation of microbial activity that is manifest at small time scales, and (2) greatly reduced process rates in deeper soil strata. Thus, beyond some threshold in storm size, increasing the duration or depth of soil moisture has little consequence for short‐term losses of CO2. In addition, laboratory rewetting across a broad range in soil water content suggest that microbial activity and CO2 efflux following rainfall may be further modified by the routing and redistribution of water along hillslopes. Finally, analysis of long‐term precipitation data suggests that half the monsoon storms in this system are sufficient to induce soil heterotrophic activity and C losses, but are not large enough to elicit autotrophic activity and C accrual by desert shrubs.  相似文献   

10.
纵观全球沙漠化的研究进展,从宏观上研究沙漠化现状和后果的报道较多,对沙漠化内在过程的综合研究较少,灌木在阻止干旱区草原沙漠化中的生态作用缺乏研究。研究假设:在干旱地区,灌木的存在提高土壤营养水平,提升土壤保水能力,促进林下植物和土壤生物群落,进而减轻风蚀和固结土壤,这些相互联系的生态过程共同阻止了草原沙漠化。为了验证上述假设,我们以内蒙古阿拉善地区的荒漠化草原为样地,研究锦鸡儿属灌木的固土能力、提高土壤保水能力、改善土壤营养能力和促进生物群落能力,从生物、土壤、水分和沙物质运动等多过程来探讨锦鸡儿属灌木在阻止草原沙漠化中的作用。目的是弄清灌木阻止干旱草地沙漠化的生态过程。在阿拉善荒漠化草原区,锦鸡儿属灌木盖度大约为12.40%。在100 m2的土地上现有灌木固土2.01 m3,固土效率为167 cm3/g鲜重,每年灌木生长可以增加固土能力0.264 m3/100 m2土地。锦鸡儿属灌木提高了土壤湿度(灌丛效应SE=0.120)和土壤对雨水的保持能力(SE 0.155),改善了土...  相似文献   

11.
为了研究玉米对不同荒漠化环境的适应性,以塔克拉玛干沙漠南缘策勒绿洲外围不同荒漠化程度下生长的玉米为试验材料,大田试验为手段,布置3个胁迫水平(轻度荒漠化、中度荒漠化、重度荒漠化),研究了玉米的土壤含水率、植株高度、生物量分配、脯氨酸(Proline)、丙二醛(MDA)、可溶性糖(Sugar)、叶绿素(Chl)、叶绿素荧光参数、比叶面积(SLA)等在不同胁迫梯度下的变化特征。结果显示:随着荒漠化程度的加剧,玉米生物量、脯氨酸、丙二醛、叶绿素、类胡萝卜素、Chl a/b、叶绿素荧光参数都有不同幅度的下降;中度荒漠化可溶性糖含量最低,重度最高,轻度介于两者之间;Car/Chl、比叶面积和地下生物量占总生物量的比重都随荒漠化程度的加剧,呈增加趋势。结果表明,荒漠化环境明显对玉米的生长产生了抑制作用;随着荒漠化程度的加剧,玉米植株的光合色素含量降低,PSⅡ受到影响,从而影响植株的光合作用,使玉米物质的积累受到影响;玉米自身通过在营养器官分配更多的能量和积累调控物质,并且在形态结构上也会发生某些改变以适应更恶劣的环境。随着胁迫程度的加剧,对其生长抑制愈严重。  相似文献   

12.
以湖南省邵阳县轻度、中度(弃耕地)和重度石漠化的灌丛生态系统为研究对象,采集3种不同石漠化程度的灌丛植物样品以及0~15、15~30、30~45 cm 3个土层土壤,研究土壤、植被养分的分配格局及相互关系.结果表明:土壤有机碳、全N含量在不同土层中差异显著,且其含量均随土层深度增加而减少,而全P、全K、全Ca、全Mg含量在各土层间无显著差异;3种石漠化程度灌丛土壤全N、全P、全Ca、全Mg含量差异显著,且中度石漠化样地土壤有机碳、全N和全P含量相对较高.轻度和重度石漠化土壤各元素含量排序均为有机碳>全K>全Ca>全Mg>全N>全P,而中度石漠化样地土壤各元素含量排序为有机碳>全K>全Ca>全N>全Mg>全P;3种石漠化程度植物各养分含量由高到低依次为Ca>N>K>Mg>P,且植物N、P含量和土壤全N、全P含量均呈显著正相关.土壤养分状况与植物生长密切相关,根据不同石漠化程度土壤养分状况,应该采用封山育林与人工造林相结合以及针对性施肥的方法来治理石漠化.  相似文献   

13.
    
This study was undertaken in a watershed at a dry Spanish Mediterranean location. The effects of the north‐facing and south‐facing aspects on atmospheric parameters, soil water contents (SWCs) and plant water balances were assessed during 18 months including two dry seasons and one wet season. The species studied were the evergreen sclerophyll Quercus suber and the semi‐deciduous shrubs Cistus albidus, Cistus monspeliensis and Lavandula stoechas. Atmospheric parameters were similar in both exposures, but water content of the 30‐cm uppermost soil layers was higher under canopy in the south‐facing slope during the wet season. Water balances of both slopes were different, and this was related to the lower shrub abundance and the vegetation patchiness observed in the south‐facing slope. Autumn plant recovery was faster in the north‐facing hillslope and occurred first in shrubs. During the whole study, Quercus suber displayed a hydrostable strategy maintaining an optimum water balance in both hillslopes. This was not the case of shrubs that avoided drought using a phenological adjustment and were more affected by aspect. Differences between tree and shrub water economies relied mainly on their respective root systems. The faster recovery of shrubs after the first autumn rainfalls allows them to avoid competition with other functional groups for water and nutrients during some days. Leaf‐drying curves distinguished the functional behaviour of the tree and the shrubs because stomatal closure occurred at higher relative water content in the former. The coexistence of both functional strategies ensures an efficient use of water and nutritional resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
李平星 《生态学杂志》2012,31(10):2651-2656
生态重要性评价是识别重要生态功能区、优化区域空间开发格局的有效途径。本文提出了基于生态因子适宜性和生态区位重要性的分项评价、进行生态重要性整合分析的研究思路,以广西西江经济带为案例区,开展生态重要性评价及其与现状建设用地的空间叠置关系研究。结果表明,经济带极重要区、很重要区、重要区、一般区、不重要区所占比重分别为16%、36%、17%、15%、16%;西部地区重要性相对较高,东部地区重要性居中,中部地区重要性较低。已有城镇建设用地和农村居民点主要分布在不重要区、重要区和很重要区,工矿用地分布相对分散。依据重要性评价结果进行有选择、有导向的生态空间占用,可在一定程度上减轻区域工业化和城镇化所带来的生态环境压力,实现区域可持续发展。  相似文献   

16.
17.
探讨我国干旱半干旱地区大气降水在土壤剖面中的时空分布特征将为西鄂尔多斯荒漠退化生态系统恢复和维持提供科学依据.本研究利用氘同位素技术研究了内蒙古西鄂尔多斯荒漠的大气降水、土壤水、地下水中的氘同位素值(δD),运用二元线性混合模型计算降水对各层土壤水的贡献率,并结合土壤含水量分析了不同降水条件下土壤剖面各层土壤水δD的时空分布特征.结果表明: 雨后9 d内,小雨(0~10 mm)影响0~10 cm土壤含水量和土壤水δD值,对表层土壤(0~10 cm)的贡献率在30.3%~87.9%;中雨(10~20 mm)影响0~40 cm土壤含水量和土壤水δD值,对0~40 cm土壤水的贡献率为28.2%~80.8%;大雨(20~30 mm)和特大暴雨(>30 mm)影响0~100 cm土壤含水量和土壤水δD值.降水对100~150 cm深层土壤水δD值影响不显著.西鄂尔多斯荒漠土壤水δD介于大气降水δD与地下水δD之间,表明西鄂尔多斯荒漠土壤水主要来源于大气降水与地下水.在同一降水强度下,表层土壤水(0~10 cm)受降水的直接影响显著,随着土壤深度的增加,土壤水δD变化幅度降低,100~150 cm深层土壤水δD基本趋于稳定.降水强度越大,对土壤水δD影响的时间越长,影响的土壤深度也越深.  相似文献   

18.
准噶尔盆地荒漠灌丛对融雪水空间分布的反馈初探   总被引:3,自引:0,他引:3       下载免费PDF全文
温带荒漠的积雪沿灌丛始融,并以灌丛为中心形成融雪漏斗,导致融雪水向灌丛基部汇集。观测资料表明:通过灌丛对融雪水分布的反馈,使灌丛周围的沙层含水量明显增加,为裸沙区的152.1-228.9%,从而提高融雪水的利用率并改善灌丛自身的供水条件,对荒漠植被的分布格局亦起一定影响。  相似文献   

19.
温带荒漠的积雪沿灌丛始融,并以灌丛为中心形成融雪漏斗,导致融雪水向灌丛基部汇集。观测资料表明:通过灌丛对融雪水分布的反馈,使灌丛周围的沙层含水量明显增加,为裸沙区的152.1一228.9%,从而提高融雪水的利用率并改善灌丛自身的供水条件,对荒漠植被的分布格局亦起一定影响。  相似文献   

20.
    
Acid mine drainage (AMD) barrens result from destruction of vegetation within AMD flow paths. When exposed to air, soluble iron in AMD undergoes oxidation and hydrolysis to form ferric iron (oxyhydr)oxides which accumulate on soil surfaces. A restoration experiment was conducted at a 50‐year‐old AMD barrens created by discharge from an abandoned underground coal mine. The objective was to determine whether vegetation could be established by altering rather than removing surface layers of acidic precipitates at a site representative of other mining‐degraded areas. Three zones in the barrens were identified based on moisture content, pH (2.7–3.3), and thickness of precipitates (0–35 cm). Our hypothesis was that application of the same reclamation method to all zones would fail to sustain >70% vegetative cover in each zone after four growing seasons. The method consisted of applying 11 t/ha lime and 27 or 54 t/ha compost before rototilling (top 15 cm) and mulching with oat straw containing viable seeds for a nurse crop. Lime‐only plots were included for comparison, and all amended plots were sown with a mine reclamation seed mix. Oats, sown species, and indigenous species dominated cover in the first, second, and fourth growing seasons, respectively. In the fourth year following reclamation, compost‐amended plots had >70% cover and improved soil properties in all three zones, providing evidence to reject our hypothesis. Vegetative restoration of AMD barrens did not require removal of highly acidic precipitates, since they could be transformed at low‐cost into a medium that supports indigenous plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号