首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
1. The plasma clearance of intravenously injected 125I-labelled mitochondrial malate dehydrogenase (half-life 7 min) was not influenced by previous injection of suramin and/or leupeptin (inhibitors of intralysosomal proteolysis). 2. Pretreatment with both inhibitors considerably delayed degradation of endocytosed enzyme in liver, spleen, bone marrow and kidneys. 3. The tissue distribution of radioactivity was determined at 30 min after injection, when only 3% of the dose was left in plasma. All injected radioactivity was still present in the carcass. The major part of the injected dose was found in liver (49%), spleen (5%), kidneys (13%) and bone, including marrow (11%). 4. Liver cells were isolated 15 min after injection of labelled enzyme. We found that Kupffer cells and parenchymal cells had endocytosed the enzyme at rates corresponding to 9530 and 156 ml of plasma/day per g of cell protein respectively. Endothelial cells do not significantly contribute to uptake of the enzyme. 5. Uptake by Kupffer cells was saturable, whereas uptake by parenchymal cells was not. This suggests that these cell types endocytose the enzyme via different receptors. 6. Previous injection of carbon particles greatly decreased uptake of the enzyme by liver, spleen and bone marrow.  相似文献   

2.
1. Lipid emulsions prepared to mimic the structure and lipid composition of plasma lipoproteins were injected into the vascular compartment of the black bream. The pattern of clearance of lipid emulsions from the plasma in the fish was similar to that in mammals though the time course was slower. In this fish clearance of triglyceride and cholesteryl ester reached equilibrium by 6.5 hr. 2. The greatest rate of clearance was between 15 min and 2.5 hr. 3. Triglycerides were cleared faster than cholesteryl ester from the plasma. 4. The percentage of triglyceride and cholesteryl ester remaining in the plasma at equilibrium in the fish was significantly higher than in mammals. Uptake of cholesteryl ester by the liver was much lower. 5. Gel electrophoresis of serum showed that these fish do not have apolipoprotein E. 6. Only 30% of the triglyceride and 50% of the cholesteryl ester injected could be accounted for by tissue (muscle, liver and fat) uptake or their presence in the circulation at equilibrium.  相似文献   

3.
Exogenous hen lysozyme or endogenous rat lysozyme labeled with 131I was intravenously injected to rats with the same dosage, respectively, and the uptake and degradation of injected 131I-labeled rat lysozyme in liver and kidney were studied in comparison with those of 131I-labeled hen lysozyme. 1. Although the serum levels of both enzymes injected were almost indentical during the first 6 h, the liver uptake of 131I-labeled hen lysozyme was 2.2-fold more than that of 131I-labeled rat lysozyme at the peak time of 5 min after injection. The uptake and clearance of 131I-labeled rat lysozyme in the kidney were exclusively slow as compared with those of 131I-labeled hen lysozyme. 2. The intracellular distribution in the liver and kidney were examined by the differential centrifugation after injection of each lysozyme. The protein-bound radioactivity of each subcellular fraction was found to be the highest in the 12 000 X g (10 min) fraction in the liver and the 19 600 X g (20 min) fraction in the kidney. The relative specific activity of 12 000 X g fraction of the liver after injection increased with the time lapse. On the other hand, the relative specific activity of 105 000 X g (1 h) fraction of the liver attained a maximum within 5 min after injection and thereafter decreased. It was assumed that the mechanism of the uptake of injected 131I-labeled rat lysozyme in the liver and kidney was similar to that of 131I-labeled hen lysozyme. 3. The degradation of exogenous or endogenous lysozyme in subcellular particles was examined. From the effect of pH, activator and inhibitor on the degradation, the proteolytic enzyme to degrade the injected 131I-labeled hen lysozyme was indicated to be mainly cathepsin BL, with the optimal pH of about 5.0, and the injected 131I-labeled rate lysozyme was mainly degraded by cathepsin D, with the optimal pH of about 3.5 The in vitro degradation of exogenous and endogenous lysozymes showed a tendency similar to the in vivo clearance from the liver and kidney.  相似文献   

4.
The sites of tissue uptake of human lipoprotein(a) (Lp(a] were studied in rats using [3H]cholesteryl linoleyl ether [( 3H]CLE) as a marker. Since rat plasma has no cholesteryl ester transfer activity, the amount of label in various tissues should reflect the quantitative uptake of Lp(a). Isolated Lp(a) was labeled with [3H]CLE by incubation overnight of Lp(a), a source of cholesteryl ester transfer activity (1.23 g/ml infranate of human plasma), and [3H]CLE-labeled Intralipid. Following labeling, the homogeneity and integrity of Lp(a) was shown by agarose electrophoresis and immunoblotting. Intact Lp(a) was injected via the tail vein of rats (120-170 g, n = 4 at each time point), and tissues were collected at various times thereafter (4-48 h). The disappearance curve of [3H]CLE-labeled Lp(a) from rat plasma was bimodal and had an initial rapid t1/2 of 1.8 h followed by a slower component, t1/2 = 13.3 h. Tissue uptake at all sampling times was greatest in liver (28.5% at 48 h of total dpm injected), followed by the intestine (9-12%), with less than 3% uptake by spleen. The small intestine was divided into four segments, and while the 3H radioactivity was similar in the proximal segments, a time-related increase in [3H]CLE was seen in its most distal portion. These studies indicate that the tissue sites of degradation in the rat of human Lp(a) are similar to human low-density lipoproteins (LDL); the increase in label in the distal portion of the small intestine with time may represent [3H]CLE excreted through the bile and absorbed by the mucosal cells.  相似文献   

5.
Uptake of radioactively labelled insulin by the mammary gland of the rat increased 12-fold in lactation compared with non-lactating controls. This uptake was decreased by the presence of unlabelled insulin, indicating that it occurred via insulin receptors. The plasma half-life of insulin is decreased in lactation from 9.4 min to 4.8 min, and the metabolic clearance rate for insulin increased from 7.26 to 13.03 ml/kg body wt. per min. The basal insulin and glucose concentrations in the plasma were decreased in lactation. Infusion of insulin at a dose which led to a small physiological rise in plasma insulin concentration increased lipogenic rates in the mammary gland by 100% without causing marked hypoglycaemia. It is concluded that the lactating mammary gland is a highly insulin-sensitive tissue and that the lower plasma insulin during lactation occurs primarily as a result of this sensitivity increasing extraction of glucose by the gland and thus producing a decrease in the plasma glucose concentration. It is suggested that a secondary result of the fall in plasma insulin concentration is the preferential direction of substrates (glucose and non-esterified fatty acids) towards the lactating mammary gland and away from adipose tissue and the liver.  相似文献   

6.
Blood concentrations of radioactivity at 2, 3 and 4 hr and tissue concentrations at 4 hr following 2-14C-methaqualone (25 mg/kg po) administration, were statistically higher in rats simultaneously dosed with ethanol (3 gm/kg po) than in controls receiving only methaqualone. The major route of elimination was biliary excretion and ethanol inhibited the biliary clearance of carbon-14. An inhibition of metabolism by ethanol could not be demonstrated and reduced clearance was attributed to a depression of active secretory processes by ethanol. Consequently, an elevation of plasma concentrations of free drug and an increased uptake of methaqualone into lipoid tissues such as the brain occurred offering an explanation for reports of potentiation following administration of the ethanolmethaqualone combination.  相似文献   

7.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

8.
The serum clearance of alpha-[3H]tocopherol has been studied after intravenous injection of intestinal lymph labeled in vivo with radioactive alpha-tocopherol. The half-life of the injected alpha-[3H]tocopherol was approx. 12 min. Fractionation of plasma by ultracentrifugation 10 min after injection of lymph showed that 91% of the radioactive alpha-tocopherol remaining in plasma was located in chylomicrons (d less than 1.006 g/ml) and 7.8% in high-density lipoproteins (HDL, 1.05 less than d less than 1.21 g/ml). 2 h after administration of alpha-tocopherol, about 35% of the radioactivity recovered in plasma was associated with chylomicrons and approx. 51% with HDLs. alpha-[3H]Tocopherol was initially taken up by the liver, which contained more than 50% of the injected radioactivity after 45-60 min. Separation of parenchymal and nonparenchymal cells demonstrated a preferential uptake of alpha-[3H]tocopherol by the parenchymal liver cells. After 24 h about 11% of the injected dose was recovered in the liver. Considering whole organs the liver, adipose tissue and skeletal muscle had the highest content of radioactivity after 24 h. Furthermore, about 14% of the administered dose was recovered in bile during 24 h draining.  相似文献   

9.
Following subcutaneous injection of the tripeptide H-Pro-[3H]Leu-Gly-NH2 ([3H]PLG) in rats, the profile of intact peptide and its radioactively labeled metabolites was examined both in plasma and in brain tissue. [3H]PLG and metabolites were determined in trichloroacetic acid extracts by reverse-phase paired-ion HPLC. Maximal plasma levels of unmetabolized PLG were reached 6-8 min after administration, after which they decreased with an elimination half-life of 20 min. The uptake of [3H]PLG in the brain ranged from 0.0013% to 0.0017% of the administered dose per g tissue at 6-30 min following subcutaneous injection. After comparing these results with our previous findings with intravenous injection of [3H]PLG, it seemed likely that the subcutaneous route of administration might be more effective in eliciting CNS effects of PLG than the intravenous route of administration. The metabolite profiles in plasma and brain point to an initial cleavage of PLG at the NH2-terminal side and a very rapid degradation of the peptide intermediate H-Leu-Gly-NH2.  相似文献   

10.
The cellular and molecular mechanisms responsible for lipoprotein [a] (Lp[a]) catabolism are unknown. We examined the plasma clearance of Lp[a] and LDL in mice using lipoproteins isolated from human plasma coupled to radiolabeled tyramine cellobiose. Lipoproteins were injected into wild-type, LDL receptor-deficient (Ldlr-/-), and apolipoprotein E-deficient (Apoe-/-) mice. The fractional catabolic rate of LDL was greatly slowed in Ldlr-/- mice and greatly accelerated in Apoe-/- mice compared with wild-type mice. In contrast, the plasma clearance of Lp[a] in Ldlr-/- mice was similar to that in wild-type mice and was only slightly accelerated in Apoe-/- mice. Hepatic uptake of Lp[a] in wild-type mice was 34.6% of the injected dose over a 24 h period. The kidney accounted for only a small fraction of tissue uptake (1.3%). To test whether apolipoprotein [a] (apo[a]) mediates the clearance of Lp[a] from plasma, we coinjected excess apo[a] with labeled Lp[a]. Apo[a] acted as a potent inhibitor of Lp[a] plasma clearance. Asialofetuin, a ligand of the asialoglycoprotein receptor, did not inhibit Lp[a] clearance. In summary, the liver is the major organ accounting for the clearance of Lp[a] in mice, with the LDL receptor and apolipoprotein E having no major roles. Our studies indicate that apo[a] is the primary ligand that mediates Lp[a] uptake and plasma clearance.  相似文献   

11.
Previously it was shown in rabbits that 20-40% of the injected dose of chylomicrons was cleared from the plasma by perisinusoidal bone marrow macrophages. The present study was undertaken to determine whether the bone marrow of other species also cleared significant amounts of chylomicrons. Canine chylomicrons, labeled in vivo with [14C]cholesterol and [3H] retinol, were injected into marmosets (a small, New World primate), rats, guinea pigs, and dogs. Plasma clearance and tissue uptake of chylomicrons in these species were contrasted with results obtained in rabbits in parallel studies. The chylomicrons were cleared rapidly from the plasma in all animals; the plasma clearance of chylomicrons was faster in rats, guinea pigs, and dogs compared with their clearance from the plasma of rabbits and marmosets. The liver was a major site responsible for the uptake of these lipoproteins in all species. However, as in rabbits, the bone marrow of marmosets accounted for significant levels of chylomicron uptake. The uptake by the marmoset bone marrow ranged from one-fifth to one-half the levels seen in the liver. The marmoset bone marrow also took up chylomicron remnants. Perisinusoidal macrophages protruding through the endothelial cells into the marrow sinuses were responsible for the accumulation of the chylomicrons in the marmoset bone marrow, as determined by electron microscopy. In contrast to marmosets, chylomicron clearance by the bone marrow of rats, guinea pigs, and dogs was much less, and the spleen in rats and guinea pigs took up a large fraction of chylomicrons. The uptake of chylomicrons by the non-human primate (the marmoset), in association with the observation that triglyceride-rich lipoproteins accumulate in bone marrow macrophages in patients with type I, III, or V hyperlipoproteinemia, suggests that in humans the bone marrow may clear chylomicrons from the circulation. It is reasonable to speculate that chylomicrons have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins.  相似文献   

12.
The kinetics underlying plasma epinephrine concentrations were studied. Six athletes (T) and six sedentary males (C) were given intravenous infusions of 3H-labeled epinephrine, after which arterial blood was drawn. They rested sitting and bicycled continuously to exhaustion (60 min at 125 W, 60 min at 160 W, 40 min at 200 W, and 240 W to the end). Work time was 154 +/- 13 (SE) (T) and 75 +/- 6 (C) min. At rest, epinephrine clearance was identical [28.4 +/- 1.3 (T) vs. 29.2 +/- 1.8 (C) ml . kg-1 . min-1], but plasma concentration [1.42 +/- 0.27 (T) vs. 0.71 +/- 0.16 (C) nmol . l-1] and, accordingly, secretion [2.9 +/- 0.7 vs. 1.5 +/- 0.4 nmol . min-1] were higher (P less than 0.05) in T than C subjects. Epinephrine clearance was closely related to relative work load, decreasing from 15% above the basal level at 30% of maximal O2 uptake (VO2 max) to 22% below at 76% of VO2 max. Epinephrine concentrations increased much more with work intensity than could be accounted for by changes in clearance and were, at exhaustion, higher (P less than 0.05) in T (7.2 +/- 1.6) than in C (2.5 +/- 0.7 nmol . l-1) subjects despite similar glucose, heart rate, and hematocrit values. At a given load, epinephrine clearance rapidly became constant, whereas concentration increased continuously. Forearm extraction of epinephrine invalidated use of blood from a cubital vein or a hand vein arterialized by hot water in turnover measurements. During exercise, changes in epinephrine concentrations reflect changes in secretion rather than in clearance. Training may increase adrenal medullary secretory capacity.  相似文献   

13.
The plasma clearance, tissue distribution and metabolism of hyaluronic acid were studied with a high average molecular weight [3H]acetyl-labelled hyaluronic acid synthesized in synovial cell cultures. After intravenous injection in the rabbit the label disappeared from the plasma with a half-life of 2.5--4.5 min, which corresponds to a normal hyaluronic acid clearance of approx. 10 mg/day per kg body weight. Injection of unlabelled hyaluronic acid 15 min after the tracer failed to reverse its absorption. Clearance of labelled polymer was retarded by prior injection of excess unlabelled hyaluronic acid. The maximum clearance capacity was estimated in these circumstances to be about 30 mg/day per kg body wt. The injected material was concentrated in the liver and spleen. As much as 88% of the label was absorbed by the liver, where it was found almost entirely in non-parenchymal cells. Degradation was rapid and complete, since volatile material, presumably 3H2O, appeared in the plasma within 20 min. Undegraded [3H]hyaluronic acid, small labelled residues and 3H2O were detected in the liver, but there was little evidence of intermediate oligosaccharides. No metabolite except 3H2O was recognized in plasma or urine. Two-thirds of the radioactivity was retained in the body water 24 h later, and small amounts were found in liver lipids. Radioactivity did not decline in the spleen as rapidly as in the liver. The upper molecular weight limit for renal excretion was about 25 000. Renal excretion played a negligible part in clearance. It is concluded that hyaluronic acid is removed from the plasma and degraded quickly by an efficient extrarenal system with a high reserve capacity, sited mainly in the liver.  相似文献   

14.
Incubation of human LDL in vitro at 37 degrees C for 48 h with [14C]glucose at concentrations from 5 to 200 mM resulted in a glycosylated LDL, containing 0.4-20 mol of glucose incorporated per apolipoprotein B of 250 000 daltons. The extent of glucose incorporated was proportional to the time of incubation and concentration of glucose. Glycosylation of LDL abolished its uptake and degradation by the high-affinity process for LDL in normal human skin fibroblasts. 125I-labeled glycosylated LDL was bound, internalized and degraded by the fibroblasts via a nonspecific low-affinity process. The 125I-labeled glycosylated LDL and 125I-labeled LDL were taken up and degraded at similar rates in a non-saturable, low-affinity process by peritoneal macrophages isolated from mice. When 125I-labeled glycosylated LDL or 125I-labeled LDL were injected into rabbits, the glycosylated LDL had a delayed plasma clearance in comparison to the LDL. The mean fractional catabolic rates were 0.67 day-1 and 1.70 day-1 for 125I-labeled glycosylated LDL and 125I-labeled LDL, respectively. The uptake and degradation of 125I-labeled LDL by human skin fibroblasts was decreased as the concentration of free carbohydrate, glucose, sucrose or sorbitol, in the medium was increased from 10 mM to 1 M. It is speculated that pathologic levels of plasma glucose in vivo could result in a decrease in LDL uptake as a result of glycosylation of LDL. A decrease in uptake of native or modified LDL in vivo could contribute to hypercholesterolemia and its pathophysiology.  相似文献   

15.
Metabolism of chylomicron arachidonic and linoleic acid in the rat   总被引:1,自引:0,他引:1  
Chyle and chylomicrons, obtained after feeding thoracic duct cannulated rats [3H]arachidonic (20:4) and [14C]linoleic acid (18:2) in cream, were injected i.v. into recipient animals. 7.5-15 min after injection, the 14C/3H ratio of the triacylglycerols remaining in plasma was about half of that in the injected chylomicrons, indicating that the chylomicron remnants formed retained relatively more [3H]20:4 than [14C]18:2. The 14C/3H ratio of plasma diacylglycerols was about 6-fold lower than that of plasma free fatty acids. The proportion of [3H]20:4 found in plasma cholesteryl esters was several-fold higher than that of [14C]18:2. Inhibition of hepatic lipase by a specific antiserum did not significantly influence the clearance of triacylglycerols, but increased the amount of 3H in plasma diacylglycerols. It also prevented the rapid clearance of phosphatidylethanolamine from plasma. The liver uptake of [3H]20:4 exceeded that of [14C]18:2. Antiserum against hepatic lipase diminished the difference. In contrast, the 14C/3H ratio of adipose tissue was higher than that of the injected chyle lipoproteins.  相似文献   

16.
1. Disappearance from plasma and uptake by the liver of cadmium (Cd), copper (Cu) and zinc (Zn) were examined with a view to studying the biological discrimination between essential and non-essential heavy metals. 2. Cd injected intravenously at a single dose of 0.8 mg/kg body wt disappeared from rat plasma rapidly within about 10 min, while Cu and Zn injected at the same dose disappeared slowly in plasma and decreased to the control level after about 3 hr. 3. Uptake of Cd by the liver corresponded well with the rapid disappearance from plasma, while Cu and Zn accumulated slowly in the liver and their concentrations started to increase after their plasma concentrations had decreased. 4. Metallothionein was induced in the liver at a similar time course for the three metals, suggesting the presence of discriminative uptake processes by the liver with similar or the same detoxification mechanisms through induction of metallothionein.  相似文献   

17.
The plasma disappearance, metabolism and uptake in the brain of [3H-Phe4]-DT gamma E and [3H-Lys9]-DE gamma E were investigated following systemic administration of these neuroleptic-like peptides to rats. 3H-DT gamma E, 3H-DE gamma E and their radioactive metabolites in plasma and brain extracts were determined by reversed-phase HPLC. Plasma disappearance of DT gamma E upon intravenous (IV) dosing followed a biphasic pattern with half-lives of 0.7 min (distribution phase) and 5.5 min (elimination phase). For DE gamma E the plasma disappearance curve was best characterized by a one-compartment model since a second elimination phase was hardly detectable by our methods. The corresponding half-life was 0.6 min, probably representative for the initial distribution phase of DE gamma E. Both neuropeptides distributed rapidly over the larger part of the extracellular fluid. Following the IV route of administration, brain uptake of DT gamma E and DE gamma E appeared to be low. Brain levels of DT gamma E decreased from 0.0075% to 0.0031% of the administered dose/g tissue at 2-15.5 min after injection, whereas those of DE gamma E decreased very rapidly from 0.0174% of the dose/g brain tissue to below the detection limit at 2-4.5 min after injection. As compared to the IV route of administration, subcutaneous (SC) injection of DE gamma E resulted into lower but remarkably longer-lasting peptide concentrations in plasma as well as in brain, possibly because of a sustained release from the SC site of injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have labelled the rat vitamin D binding protein (DBP), DBP-actin and rat albumin with 125I-tyramine-cellobiose (125I-TC). In contrast with traditional 125I-labelling techniques where degraded radioactive metabolites are released into plasma, the 125I-TC moiety is trapped intracellularly in the tissues, where the degradation of the labelled proteins takes place. By using this labelling method, the catabolism of proteins can be studied in vivo. In this study we have used this labelling technique to compare the tissue uptake and degradation of DBP, DBP-actin and albumin in the rat. DBP-actin was cleared from plasma at a considerably faster rate than DBP. After intravenous injection of labelled DBP-actin complex, 48% of the radioactive dose was recovered in the liver after 30 min, compared with 14% when labelled DBP was administered. Only small amounts of DBP-actin complex were recovered in the kidneys. In contrast with the results obtained with DBP-actin complex, liver and kidneys contributed about equally in the uptake and degradation of DBP determined 24 h after the injection. When labelled DBP was compared with labelled albumin, the amount of radioactivity taken up by the liver and kidneys by 24 h after the injection was 2 and 5 times higher respectively. In conclusion, liver and kidneys are the major organs for catabolism of DBP in the rat. Furthermore, binding of actin to DBP enhances the clearance of DBP from circulation as well as its uptake by the liver.  相似文献   

19.
Apolipoprotein E (apoE) is an important determinant for the uptake of triglyceride-rich lipoproteins and emulsions by the liver, but the intracellular pathway of apoE following particle internalization is poorly defined. In the present study, we investigated whether retroendocytosis is a unique feature of apoE as compared with apoB by studying the intracellular fate of very low density lipoprotein-sized apoE-containing triglyceride-rich emulsion particles and LDL after LDLr-mediated uptake. Incubation of HepG2 cells with [(3)H]cholesteryl oleate-labeled particles at 37 degrees C led to a rapid release of [(3)H]cholesterol within 30 min for both LDL and emulsion particles. In contrast, emulsion-derived (125)I-apoE was more resistant to degradation (>/=120 min) than LDL-derived (125)I-apoB (30 min). Incubation at 18 degrees C, which allows endosomal uptake but prevents lysosomal degradation, with subsequent incubation at 37 degrees C resulted in a time-dependent release of intact apoE from the cells (up to 14% of the endocytosed apoE at 4 h). The release of apoE was accelerated by the presence of protein-free emulsion (20%) or high density lipoprotein (26%). Retroendocytosis of intact particles could be excluded since little intact [(3)H]cholesteryl oleate was released (<3%). In contrast, the degradation of LDL was complete with virtually no secretion of intact apoB into the medium. The intracellular stability of apoE was also demonstrated after hepatic uptake in C57Bl/6 mice. Intravenous injection of (125)I-apoE and [(3)H]cholesteryl oleate-labeled emulsions resulted in efficient LDLr-mediated uptake of both components by the liver (45-50% of the injected dose after 20 min). At 1 h after injection, only 15-20% of the hepatic (125)I-apoE was degraded, whereas 75% of the [(3)H]cholesteryl oleate was hydrolyzed. From these data we conclude that following LDLr-mediated internalization by liver cells, apoE can escape degradation and can be resecreted. This sequence of events may allow apoE to participate in its hypothesized intracellular functions such as mediator of the post-lysosomal trafficking of lipids and very low density lipoprotein assembly.  相似文献   

20.
The effect of various doses of different types (reverse phase evaporation vesicles and small unilamellar vesicles) of intravenously injected liposomes on reticuloendothelial activity, as measured by the blood clearance rate of intravenously injected carbon, was investigated. Also the effect of pretreatment with reverse phase evaporation vesicles on blood clearance and tissue distribution of a second dose of similar vesicles was determined. For all concentrations used reverse phase evaporation vesicles caused reduction in reticuloendothelial activity at least up to 4 h after injection. 24 h after administration the rate of carbon clearance returned to the control level. On the contrary small unilamellar vesicles did not block reticuloendothelial activity. Pretreatment with reverse phase evaporation vesicles (250 μmol/kg) caused an increased blood level and a decreased hepatic uptake of a second dose of the vesicles, injected 1 h after the first dose. This seems to be due to a depression of reticuloendothelial activity and not to a depletion of opsonins. Pretreatment with small unilamellar vesicles (250 μmol/kg) had no significant influence on the tissue distribution of a second dose of vesicles. Our results clearly indicate that reverse phase evaporation vesicles cause a reversible depression of reticuloendothelial activity and this depression seems to be induced by a saturation of reticuloendothelial cells with liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号