首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We assayed the cytoskeleton organization of normal, scar, and embryonic human fibroblasts spread on major proteins of the extracellular matrix (ECM), type-I and-IV collagens, laminin 2/4, and fibronectin. Confocal fluorescent microscopy showed that fibroblasts of different origins were distinguished by their organization of actin structures and focal contacts visualized with antibodies to vinculin. It was found that different fibroblasts spread on identical ECM proteins had a common spatial organization of their cytoskeletons and some modifications of their actin structures and focal contacts. Variations in the organization of actin microfilaments indicate differences in cell interactions with various ECM proteins. The difference may be dependent on the integrin combination exposed on the cell membrane. It is suggested that fibroblasts of different origins differ in their morphogenetic functions.  相似文献   

4.
Cell adhesion to laminin 1 or to fibronectin is mediated by distinct sets of integrins and is differentially regulated by protein kinase C (PKC). It suggests that upon integrin ligation to laminin 1 or to fibronectin different intracellular signaling pathways could be activated. We have therefore investigated the formation of signaling complexes induced during cell adhesion to laminin 1 or to fibronectin. Following cell adhesion to laminin 1 the re-arrangement of the cytoskeleton was slower than that observed on fibronectin and it was activated by treating the cells with H-7, an inhibitor of PKC. Conversely, treatment of laminin-adhering cells with a PKC activator resulted in a rapid disorganization of the actin cytoskeleton while a similar treatment had no effect on fibronectin-adhering cells. These results suggested that the structural organization of the adhesion complexes might be substrate-specific and might correspond to a different arrangement of cytoskeletal and/or cytoplasmic proteins. Reflection interference contrast microscopy (RICM) images revealed that cell-substratum contacts formed on laminin 1 were not well differentiated in contrast to those developed on fibronectin. However, immunofluorescence staining revealed a similar organisation of actin microfilaments, talin and phosphotyrosyl-containing proteins on both substrates. In contrast, differences were observed for vinculin distribution within cells spread on fibronectin or on laminin I. Following cell adhesion to fibronectin most of the vinculin appeared as thick patches at the tips of the actin stress fibers while in laminin-adhering cells vinculin was recruited into thin streaks localized at the end of only some actin stress fibers.  相似文献   

5.
The locomotion of murine myoblasts over the extracellular matrix components laminin and fibronectin was analyzed using quantitative videomicroscopy, and the organization of the cytoskeleton was observed in parallel immunofluorescence studies. Cells plated on the laminin-nidogen complex locomoted twice as fast as on laminin alone. The main form of translocation on laminin was a jerky cycle of prolonged lamellipod extension followed by rapid (approximately 200- less than 500 microh h-1) movement of the cell body into the extended lamellipod. The locomotion-stimulating activity of laminin resides in the elastase digestion fragment E8, part of the laminin long arm, while the E1-4 fragment containing the three short arms is inactive. Myoblasts moved poorly over fibronectin irrespective of whether high, intermediate, or low coating concentrations were used (approximately 5,000- approximately 10 fmol cm-2). In contrast, the locomotory responses both to laminin and to E8 peaked sharply at coating concentrations approximately 20-50 fmol cm-2 and decreased at higher concentrations. This response corresponds to that expected for a haptotactic stimulant. When cells locomoted over a mixed substrate of laminin and fibronectin, the fibronectin effects appeared to predominate. The cytoskeleton has been implicated in many cellular motile processes. Within 6 h on fibronectin many cells expressed vinculin-containing focal contacts, elaborated stress fibers and had periodically organized alpha actinin, whereas on laminin, most cells showed diffuse vinculin and alpha actinin and a fine meshlike actin cytoskeleton. We conclude that the poor locomotion of cells over fibronectin is because of the cytoskeletal stabilization it induces.  相似文献   

6.
Endothelial cells and the regulation of their migration are of prime importance in many physiological and pathological processes such as angiogenesis. RhoA, an important Rho family member known to trigger actin reorganization, has been shown to mediate the formation of focal adhesions and stress fibers in quiescent fibroblasts. However, recent studies have emphasized its functional diversity and its implication in migration or metastatic processes in different cell types other than fibroblasts. Its role in endothelial cells is little known. In this study, we were interested by analyzing in human endothelial cells the subcellular redistribution of endogenous RhoA and the reorganization of cytoskeletal actin induced by two important extracellular matrix proteins, collagen and fibronectin. This paper shows a translocation of RhoA and its association with cortical actin in focal contact domains at membrane ruffles and at lamellipodia of spread or migrating endothelial cells, in the absence of any soluble mitogen stimulation. Furthermore, RhoA was found colocalized with ezrin, a member of the ERM family proteins newly described as important membrane-actin cytoskeleton linkers, at early membrane ruffles of endothelial cells spread on collagen but not on fibronectin. The present study points out that extracellular matrix, depending on the nature of its components, may promote distinct assemblies of focal contact constitutive proteins and strongly suggests that endothelial RhoA, like Rac1, may be an important mediator of matrix signaling pathway regulating endothelial cell adhesiveness and motility, independently of growth factor stimulation.  相似文献   

7.
Fibroblasts, when plated on the extracellular matrix protein fibronectin (FN), rapidly spread and form an organized actin cytoskeleton. This process is known to involve both the central alpha5beta1 integrin-binding and the C-terminal heparin-binding regions of FN. We found that within the heparin-binding region, the information necessary for inducing organization of stress fibers and focal contacts was located in a 29-amino acid segment of FN type III module 13 (III13). We did not find a cytoskeleton-organizing role for repeat III14, which had previously been implicated in this process. Within III13, the same five basic amino acids known to be most important for heparin binding were also necessary for actin organization. A substrate of III13 alone was only weakly adhesive but strongly induced formation of filopodia and lamellipodia. Stress fiber formation required a combination of III13 and III7-11 (which contains the integrin alpha5beta1 recognition site), either as a single fusion protein or as separate polypeptides, and the relative amounts of the two binding sites appeared to determine whether stress fibers or filopodia and lamellipodia were the predominant actin structures formed. We propose that a balance of signals from III13 and from integrins regulates the type of actin structures assembled by the cell.  相似文献   

8.
Randomly spread fibroblasts on fibronectin-coated elastomeric membranes respond to cyclic strain by a varying degree of focal adhesion assembly and actin reorganization. We speculated that the individual shape of the cells, which is linked to cytoskeletal structure and pre-stress, might tune these integrin-dependent mechanotransduction events. To this aim, fibronectin circles, squares and rectangles of identical surface area (2000 μm2) were micro-contact printed onto elastomeric substrates. Fibroblasts plated on these patterns occupied the corresponding shapes. Cyclic 10% equibiaxial strain was applied to patterned cells for 30 min, and changes in cytoskeleton and cell-matrix adhesions were quantified after fluorescence staining. After strain, megakaryocytic leukemia-1 protein translocated to the nucleus in most cells, indicating efficient RhoA activation independently of cell shape. However, circular and square cells (with radial symmetry) showed a significantly greater increase in the number of actin stress fibers and vinculin-positive focal adhesions after cyclic strain than rectangular (bipolar) cells of identical size. Conversely, cyclic strain induced larger changes in pY397-FAK positive focal complexes and zyxin relocation from focal adhesions to stress fibers in bipolar compared to symmetric cells. Thus, radially symmetric cells responded to cyclic strain with a larger increase in assembly, whereas bipolar cells reacted with more pronounced reorganization of actin stress fibers and matrix contacts. We conclude that integrin-mediated responses to external mechanical strain are differentially modulated in cells that have the same spreading area but different geometries, and do not only depend on mere cell size.  相似文献   

9.
Cytoskeleton alterations of NIH/3T3 fibroblast monolayers transfected with Ha-ras-activated oncogene were studied by immunofluorescence, immunoelectron microscopy, and immunoelectrophoretic analysis of actin isoforms. Transformation foci were found to consist of cells with a round shape and rare stress fibers that spread sparsely, forming rare focal contacts and fibronexuses. The loss of stress fibers in transformed cells was confirmed by staining with rhodamine-phalloidin and with a fluorescinated anti-non-muscle cell actin antibody. The transformed cells were anchored to the substrate prominently by filaments that contained fibronectin, as showed by immunoelectron microscopy. A down-regulation of alpha-actin isoform was observed by immunofluorescence and immunoblotting analysis using a specific monoclonal antibody. The diffuse distribution of alpha-actin, lacking a specific association with stress fibers, challenges the hypothesis of a connection between alpha-actin down-regulation and stress fiber loss.  相似文献   

10.
The adhesion of a human microvascular endothelial cell line to its own matrix was studied in comparison with adhesion of the same cells to fibronectin or thrombospondin-1. These endothelial cells adhered preferentially to their matrix whereas an equal cell number was attached to fibronectin or thrombospondin-1. The adhesion of cells to thrombospondin-1 was mediated by the N-terminal heparin binding domain of thrombospondin-1 as shown by the use of a recombinant fragment, N18. Cells adhering to their matrix displayed a morphology and a cytoskeleton organization very similar to that observed in vivo with an apical immunostaining for actin stress fibers and a fine basal labeling for vinculin. Cells on fibronectin were extensively spread and rapidly assembled stress fibers and focal contacts. Cells adherent to thrombospondin-1 presented large lamellae rich in actin but devoid of vinculin and only few actin fibers were observed. Depending on the substratum used, adhering endothelial cells displayed also different tyrosine phosphorylation patterns on electrophoresis. Our observations indicate that endothelial cells adhering to their matrix present an activation state intermediate between that induced by a "hyperadhesive" protein like fibronectin and that generated by a moderate, indeed anti-adhesive, protein like thrombospondin-1.  相似文献   

11.
We investigated the organization of the cytoskeleton and the focal contacts of bovine aortic endothelial cells cultured on type I and III collagen. The influence of these collagens on cell morphology and the distribution pattern of actin, vimentin, talin, and vinculin was analyzed by light microscopy, conventional electron microscopy, immunofluorescence, and immunogold labeling after lysis-squirting. Whereas the morphology of the endothelial cells is not markedly influenced, the structure of the cytoskeleton and the focal contacts of the cells are altered by the different collagen types. Stress fibers are more distinct in cells grown on type I collagen; cells on type III collagen show a more diffuse distribution of actin molecules. Intermediate filaments seem not to be affected by the collagens. The areas of focal contacts are larger in cells on type I collagen. Additionally, the labeling pattern of talin and vinculin is denser in focal contacts of cells grown on type I collagen. These results suggest an important role of the type of collagen in mediation of the organization of the microfilament system and the adhesion structures of bovine aortic endothelial cells in culture.  相似文献   

12.
Effect of antioxidants on actin cytoskeleton in 3T3 fibroblasts and 3T3 fibroblasts transformed with SV40 virus (3T3-SV40 cells) was studied. Antioxidants used were as follows: N-acetyl-L-cysteine (NAC), (-)-2-oxo-4-thiazolidine-carboxylic acid (OTZ), and glutathione in the reduced form (GSH). Both NAC and OTZ are precursors of GSH in the cell, but, in contrast to NAC, OTZ reduces inside the cell forming L-cysteine. The presence of NAC (5-20 mM) in the culture medium of both cell types resulted in loosening of monolayer, fragmentation of stress fibers, and the appearance of amorphous actin structures. As 3T3-SV40 cells contain less actin stress fibers than 3T3 cells, the NAC-induced rearrangements of actin cytoskeleton were stronger in these cells than in 3T3 cells. In contrast to NAC, OTZ (10-20 mM) did not destroy monolayer and did not induce any visible disappearance of stress fibers either in 3T3 or 3T3-SV40 cells. However, in the presence of OTZ, amorphous actin-containing structures were observed in 3T3-SV40 cells. The effect of glutathione on both cell types was similar to that of NAC. The time required for GSH-induced alterations of actin cytoskeleton (about 5 h) was consistent with the increase in the intracellular level of reactive oxygen species (4 h after addition of GSH to the culture medium). Upon removal of the antioxidants from the medium, actin filament structures were reconstructed. However, within 24 h after withdrawal of NAC or GSH, only a partial reconstruction of stress fibers was observed in 3T3 cells. On the contrary, 3T3-SV40 cells demonstrated formation of well-structured actin fibers similar to normal fibroblasts. These results suggest that GSH can act as a pro-oxidant in the absence of oxidative stress.  相似文献   

13.
We have studied the function and distribution of the alpha 1 beta 1, alpha 5 beta 1 and alpha 6 beta 1 heterodimers on type-1 astrocytes with antibodies specific for integrin subunits (alpha 1, alpha 5, alpha 6, and beta 1). The alpha 1 beta 1 heterodimer mediates adhesion to laminin and collagen, the alpha 5 beta 1 to fibronectin in an RGD- dependent manner. The alpha 5 beta 1 integrin is found in focal contacts in long-term cultures of well-spread astrocytes colocalizing with vinculin and the termini of actin stress fibers. alpha 1 beta 1 heterodimers can occasionally be found as small aggregates within focal contacts but they do not accumulate there. Instead, alpha 1 beta 1 integrins are found in punctate deposits called point contacts which are distributed over the upper and the lower cell surfaces whether laminin, collagen, fibronectin or polylysine is used as a substratum. Unlike focal contacts, point contacts contain clathrin but rarely codistribute with actin or vinculin. Two observations indicate that these point contacts are functional. First, mAb 3A3, directed against the rat alpha 1 subunit, inhibits the attachment of astrocytes to laminin and collagen. Second, during the spreading of astrocytes, a band of point contacts forms around the cell perimeter at a time when no focal contacts are visible. While alpha 1 beta 1 integrins are found only in point contacts in astrocytes, the alpha 6 beta 1 integrin, another laminin receptor, is localized within focal contacts. Moreover, alpha 1 beta 1 heterodimers accumulate in focal contacts in fibroblasts. Thus, the alpha subunit contributes, independent of its ligand, to functional integrin heterodimer accumulation in focal contacts or in point contacts. This accumulation varies among different cell types with apparently identical heterodimers as well as with the motile state (spreading vs. flattened) of the same cells.  相似文献   

14.
This study shows that artificial increase in cell site leads to morphological normalization of transformed fibroblasts. Mouse L cells (clone 171/5) were used. As most transformed cells, they were poorly spread on the substratum, made only dot-like focal contacts with it, rounded quickly at room temperature and did not contain prominent actin cables. Giant cells were obtained by incubation of these cells in the medium supplemented with mitomycin C (0.15-0.20 mcg/ml). DNA synthesis and mitosis were blocked by this treatment, while protein synthesis was changing very slightly. As a consequence, the cell size increased dramatically from 3 to 11 days of the cell incubation in the mitomycin containing medium. The degree of cell spreading per mcg of protein increased significantly in the giant cells. These cells do not round after moderate cooling, and well developed system of actin cables and matured streak-like focal contacts associated with these cables are formed in them. These results, along with our previous data on the restoration of cell spreading and cytoskeleton structure in giant multinucleated cells, provide strong evidences that the increase in cell size per se can induce qualitative changes in cell morphology. It can be suggested that there are some scaling-dependent factors regulating the processes of cytoskeleton assembly and formation of cell-substrate contacts.  相似文献   

15.
Summary This study examined the behavior of rat tendon fibroblasts, baby hamster kidney fibroblasts, macrophage-like P388D1 cells, and neurons from rat dorsal root ganglia, cultured on fibronectin strands 0.2–5 μm in diameter. We investigated cell spreading, orientation, formation of focal contacts, the speed of cell movement, and the speed of neurite outgrowth in cells cultured on fibronectin strands, glass covered with fibronectin, and plain, nontreated glass. Fibronectin strands significantly promoted cell spreading and caused a marked alignment of all kinds of cells to the direction of the fiber. The fibers caused the alignment of actin filaments in fibroblasts and focal contacts in fibroblasts and macrophages and increased polymerization of F-actin in cells. Fibronectin fibers also increased the speed and persistence of cell movement and the rate of neurite outgrowth. Macrophages grown on fibronectin fibers produced numerous actin-rich microspikes and adopted a polarized, migratory phenotype. These findings indicate that fibronectin strands, resembling natural components of the extracellular matrix, are more effective in activating various types of cells than two-dimensional, fibronectin-covered substrata. The results also confirm the suitability of the three-dimensionally oriented fibronectin form for use in clinical practice.  相似文献   

16.
Fibroblast spreading was studied using immunofluorescent method that provided visualization of actin structures and adhesion contacts in the same cell. Four stages of actin system formation were observed. 1. Actin concentration in ruffles at the cell periphery. Formation of numerous dot-like contacts along the whole perimeter of the cell. 2. Formation of a circumferential actin bundle. Focal contacts are located at the outer edge of the bundle. 3. Gradual transformation of the circumferential bundle into actin network with triangular meshes. Peripheral (rather than internal) filaments of the network are associated with the focal contacts. 4. Appearance of the system of long straight actin bundles (stress fibers) associated with dash-like focal contacts. The stress fibers are supposed to arise from the triangular actin network which in its turn arises from the circumferential bundle. It is suggested that the formation of actin cytoskeleton is a process driven by the development of tensions in actin structures attached to the focal contacts at the cell periphery.  相似文献   

17.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

18.
Focal contacts are transmembrane links between the extracellular matrix and the actin cytoskeleton that play a critical role in directed cell migration, adhesion, and normal growth. Several different component proteins of the focal contact show develop-mentally dependent changes in expression, suggesting that this is an important mechanism by which focal contact formation is controlled during embryogenesis. In this report we examine the expression of focal contact-associated proteins in human fetal and neonatal melanocytes using Western blotting. We show that expression of paxillin, a 69-kDa vinculin binding protein, is fourfold higher in neonatal melanocytes than in fetal melanocytes. Further, we show that talin, a high molecular weight structural protein that links integrins to the actin cytoskeleton, is proteolytically cleaved in fetal, but not in neonatal melanocytes. Immunofluorescence microscopy of cells grown on fibronectin confirmed the presence of paxillin, talin, and vinculin at the ends of actin stress fibers at presumptive focal contacts in melanocytes. Adhesion experiments to extracellular matrix ligands revealed significant differences in adhesion of fetal and neonatal melanocytes to fibronectin. The developmentally specific changes in focal contact protein expression observed suggest that this may be an important mechanism by which focal contact assembly is controlled in human melanocytes during development.  相似文献   

19.
The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread. Upregulation of alpha5 integrin also occurs in the same stiffness range, but exogenous expression of alpha5 integrin is not sufficient to cause cell spreading on soft surfaces. Neutrophils, in contrast, show no dependence of either resting shape or ability to spread after activation when cultured on surfaces as soft as 2 Pa compared to glass. The shape and cytoskeletal differences evident in single cells on soft compared to hard substrates are eliminated when fibroblasts or endothelial cells make cell-cell contact. These results support the hypothesis that mechanical factors impact different cell types in fundamentally different ways, and can trigger specific changes similar to those stimulated by soluble ligands.  相似文献   

20.
Integrin receptors, and associated cytoplasmic proteins mediate adhesion, cell signaling and connections to the cytoskeleton. Using fluorescent protein chimeras, we analyzed initial integrin adhesion in spreading fibroblasts with Total Internal Reflection Fluorescence (TIRF) microscopy. Surprisingly, sequential radial projection of integrin and actin containing filopodia formed the initial cell-matrix contacts. These Cdc42-dependent, integrin-containing projections recruited cytoplasmic focal adhesion (FA) proteins in a hierarchical manner; initially talin with integrin and subsequently FAK and paxillin. Radial FA structures then anchored cortical actin bridges between them and subsequently cells reorganized their actin, a process promoted by Src, and characterized by lateral FA reorientation to provide anchor points for actin stress fibers. Finally, the nascent adhesions coalesced until they formed mature FAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号