首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1985,101(5):1790-1798
Extracellular matrix (ECM), prepared from chick embryo fibroblasts, contains fibronectin as the major structural protein along with collagen and other polypeptides as less abundant protein components. When Rous sarcoma virus-transformed chick embryo fibroblasts are cultured on the ECM in the presence of the tumor promoter tetradecanoyl phorbol acetate, the transformed cells lose their characteristic rounded morphology and align on and within the ECM fibrillar network. This restrictive aspect of ECM is only temporary, however, and with time (24-72 h) the transformed cells progressively degrade the ECM fibers and resume their rounded appearance. The matrix degradation can be monitored by employing biosynthetically radiolabeled ECM. The addition of purified chicken plasminogen to the Rous sarcoma virus- transformed chick embryo fibroblast cultures enhances the rate and extent of ECM degradation, due to the elevated levels in the transformed cultures of plasminogen activator. Plasminogen-dependent and -independent degradation of ECM has been characterized with regard to sensitivity to various natural and synthetic protease inhibitors and to the requirement of cell/ECM contact. Plasminogen-dependent degradation of ECM occurs rapidly when ECM and cells are in contact or separated, whereas plasminogen-independent degradation is greatly reduced when ECM and cells are separated, which suggests that cell surface-associated proteolytic enzymes are involved. A possible role in ECM degradation has been indicated for cysteine proteases, metallo enzymes, and plasminogen activator, the latter as both a zymogen activator and a direct catalytic mediator.  相似文献   

2.
In view of recent studies showing that cell proliferation of E1Aad5+c-Ha-ras-transformed fibroblasts cannot be regulated by growth factors and phorbol eaters in contrast to normal and E1Aad5-immortalized cell lines, the present work was undertaken to examine the role of protein kinase C (PKC) in the mitogenic signal transduction machinery in rat embryonal fibroblasts. It is shown that PKC is activated by acidic growth factor and phorbol esters in all the three cell lines. These findings suggest the existence of an additional, not associated with PKC-, growth-signaling pathway in E1Aad5-Ha-ras-transformed rat embryonal fibroblasts.  相似文献   

3.
We have compared the rate of synthesis, half-life, and steady-state content of the oncoprotein p53 in logarithmically growing cultures of (a) primary embryo, (b) immortalized but untransformed, and (c) spontaneously transformed mouse fibroblasts. Steady-state p53 content derived from metabolic labeling and immunoprecipitation data revealed either no change or only a slight decrease (up to 1.5-fold depending on the antibody used) in transformed cells compared with immortal or primary cultures, p53 showed the same short half-life in all cell types. In contrast, immunocytochemical analysis of p53 content in intact cells demonstrated an increase in the proportion of cells with detectable nuclear p53 from approximately 4% in primary and immortal cultures to approximately 10% in fully transformed cells, together with a marked increase in the intensity of nuclear positivity. We suggest that transformation is associated with an increase in the cellular content of p53 in a subcellular pool which was not detectable in detergent for immunoprecipitation. In addition, immunocytochemical analysis demonstrated a marked heterogeneity in p53 content in all cell types which was not related to clonal variation, cell cycle phase, or growth state. These data challenge previous suggestion regarding the role of p53 in growth control.  相似文献   

4.
Quiescent cultures of rat embryo fibroblasts synthesize and secrete several proteins in response to mitogenic stimulation. Two of these proteins have been characterized in this study and the effect of oncogenic transformation on these proteins was monitored. A serum induced 48,000 protein was shown to be related to plasminogen activator inhibitor while another serum-induced protein ofM r 45,000 was found to be an inhibitor of DNA synthesis. Transformation of rat embryo fibroblasts with oncogenesmyc andras resulted in drastic reduction in the level of these proteins. The reduced levels of protease inhibitor may be responsible for the loss of anchorage dependence of the transformed cells. The DNA synthesis inhibitor protein may act as a negative growth regulator and reduced levels of this protein inmyc-ras transformed cells may accelerate the proliferation of these cells.  相似文献   

5.
We assayed the cytoskeleton organization of normal, scar, and embryonic human fibroblasts spread on major proteins of the extracellular matrix (ECM), type-I and-IV collagens, laminin 2/4, and fibronectin. Confocal fluorescent microscopy showed that fibroblasts of different origins were distinguished by their organization of actin structures and focal contacts visualized with antibodies to vinculin. It was found that different fibroblasts spread on identical ECM proteins had a common spatial organization of their cytoskeletons and some modifications of their actin structures and focal contacts. Variations in the organization of actin microfilaments indicate differences in cell interactions with various ECM proteins. The difference may be dependent on the integrin combination exposed on the cell membrane. It is suggested that fibroblasts of different origins differ in their morphogenetic functions.  相似文献   

6.
Effect of antioxidants on actin cytoskeleton in 3T3 fibroblasts and 3T3 fibroblasts transformed with SV40 virus (3T3-SV40 cells) was studied. Antioxidants used were as follows: N-acetyl-L-cysteine (NAC), (-)-2-oxo-4-thiazolidine-carboxylic acid (OTZ), and glutathione in the reduced form (GSH). Both NAC and OTZ are precursors of GSH in the cell, but, in contrast to NAC, OTZ reduces inside the cell forming L-cysteine. The presence of NAC (5-20 mM) in the culture medium of both cell types resulted in loosening of monolayer, fragmentation of stress fibers, and the appearance of amorphous actin structures. As 3T3-SV40 cells contain less actin stress fibers than 3T3 cells, the NAC-induced rearrangements of actin cytoskeleton were stronger in these cells than in 3T3 cells. In contrast to NAC, OTZ (10-20 mM) did not destroy monolayer and did not induce any visible disappearance of stress fibers either in 3T3 or 3T3-SV40 cells. However, in the presence of OTZ, amorphous actin-containing structures were observed in 3T3-SV40 cells. The effect of glutathione on both cell types was similar to that of NAC. The time required for GSH-induced alterations of actin cytoskeleton (about 5 h) was consistent with the increase in the intracellular level of reactive oxygen species (4 h after addition of GSH to the culture medium). Upon removal of the antioxidants from the medium, actin filament structures were reconstructed. However, within 24 h after withdrawal of NAC or GSH, only a partial reconstruction of stress fibers was observed in 3T3 cells. On the contrary, 3T3-SV40 cells demonstrated formation of well-structured actin fibers similar to normal fibroblasts. These results suggest that GSH can act as a pro-oxidant in the absence of oxidative stress.  相似文献   

7.
Insulin regulates diverse cellular responses including actin reorganization. The mechanism by which insulin induces formation of lamellipodia in cultured cells is not known but is likely to involve activation of Src family protein-tyrosine kinases. Here we show that protein-tyrosine phosphatase 1B (PTPIB) activates Src, thereby initiating the activation of a Rac-dependent pathway leading to cytoskeletal remodeling. Conversely, expression of a proline to alanine (P309,310A) PTP1B mutant, which cannot activate Src, fails to activate Rho GTPases or cause changes in actin organization. Rat fibroblasts lacking PTP1B expression do not activate Src or Rac in response to insulin and cannot reorganize actin. These results show that PTP1B, best known as a negative regulator of the metabolic effects of insulin, is required for the effects of insulin on actin organization in immortalized fibroblasts.  相似文献   

8.
The actin cytoskeleton in normal and pathological cell motility   总被引:6,自引:0,他引:6  
Cell motility is crucial for tissue formation and for development of organisms. Later on cell migration remains essential throughout the lifetime of the organism for wound healing and immune responses. The actin cytoskeleton is the cellular engine that drives cell motility downstream of a complex signal transduction cascade. The basic molecular machinery underlying the assembly and disassembly of actin filaments consists of a variety of actin binding proteins that regulate the dynamic behavior of the cytoskeleton in response to different signals. The multitude of proteins and regulatory mechanisms partaking in this system makes it vulnerable to mutations and alterations in expression levels that ultimately may cause diseases. The most familiar one is cancer that in later stages is characterized by active aberrant cell migration. Indeed tumor invasion and metastasis are increasingly being associated with deregulation of the actin system.  相似文献   

9.
10.
Domain structure and organisation in extracellular matrix proteins.   总被引:8,自引:0,他引:8  
Extracellular matrix (ECM) proteins are large modular molecules built up from a limited set of modules, or domains. The basic folds of many domains have now been determined by crystallography or NMR spectroscopy. Recent structures of domain pairs and larger tandem arrays, as well as of oligomerisation domains, have begun to reveal the principles underlying the higher order architecture of ECM proteins. Structural information, coupled with site-directed mutagenesis, has been instrumental in showing how adjacent domains can co-operate in ligand binding. Very recently, the first heterotypic ECM protein complexes have become available. Here, we review the advances of the last 5 years in understanding ECM protein structure, with special emphasis on those structures that have given insight into the biological functions of ECM proteins.  相似文献   

11.
《The Journal of cell biology》1984,99(5):1743-1753
The distribution of heparan sulfate proteoglycans (HSPG) on cultured fibroblasts was monitored using an antiserum raised against cell surface HSPG from rat liver. After seeding, HSPG was detected by immunofluorescence first on cell surfaces and later in fibrillar deposits of an extracellular matrix. Cell surface HSPG aligned with microfilament bundles of rat embryo fibroblasts seen by phase-contrast microscopy but was diffuse on transformed rat dermal fibroblasts (16C cells) which lack obvious stress fibers. Focal adhesions isolated from either cell type and monitored by interference reflection microscopy showed a concentration of HSPG labeling with respect to the rest of the membrane. Increased labeling in these areas was also seen for fibronectin (FN) by using an antiserum that detects both plasma and cell-derived FN. Double immunofluorescent staining of fully adherent rat embryo fibroblast cells showed some co-distribution of HSPG and FN, and this was confirmed by immunoelectron microscopy, which detected HSPG at localized areas of dorsal and ventral cell membranes, overlapping cell margins, and in the extracellular matrix. During cell shape changes on rounding and spreading, HSPG and FN may not co- distribute. Double labeling for actin and either HSPG or FN showed a closer correlation of actin with HSPG than with FN. The studies are consistent with HSPG being closely involved in a transmembrane cytoskeletal-matrix interaction; the possibility that HSPG coordinates the deposition of FN and other matrix components with cytoskeletal organization is discussed.  相似文献   

12.
The effects of two antioxidants on the activity of matrix metalloproteinases (MMP) secreted by normal (3T3) and transformed (3T3-SV40) mouse fibroblasts were examined. We compared the action of N-acetylcysteine (NAC) and alpha-lipoic acid (ALA) on two gelatinases, MMP-2 and MMP-9. Gel zymography demonstrated that activity of MMP-2 was higher in normal 3T3 cells, whereas, in transformed 3T3-SV40 cells, the MMP-9 activity was higher. NAC treatment for 2–6 h completely suppressed MMP-2 and MMP-9 activity in both cell lines. The inhibitory effect did not depend on NAC concentration within the range of 1–10 mM. ALA (1.2 mM) did not affect the cells very dramatically; it decreased the MMP-2 activity in both types of cells. MMP-9 activity in the presence of ALA was decreased in 3T3 cells and slightly increased in 3T3-SV40 cells. The activity of the membrane bound and intracellular MMP was not changed under the same conditions. In conclusion, the altered activity of MMP in the presence of antioxidant may influence the intracellular signaling and cell functions.  相似文献   

13.
In order to define the symbiotic role of some of the chemical substituents in the Rhizobium etli Nod factors (NFs), we purified Nod metabolites secreted by the SM25 strain, which carries most of the nodulation genes, and SM17 with an insertion in nodS. These NFs were analyzed for their capabilities to induce root hair curling and cytoskeletal rearrangements. The NFs secreted by strain SM17 lack the carbamoyl and methyl substituents on the nonreducing terminal residue and an acetyl moiety on the fucosyl residue on the reducing-terminal residue as determined by mass spectrometry. We have reported previously that the root hair cell actin cytoskeleton from bean responds with a rapid fragmentation of the actin bundles within 5 min of NF exposure, and also is accompanied by increases in the apical influxes and intracellular calcium levels. In this article, we report that methyl-bearing NFs are more active in inducing root hair curling and actin cytoskeleton rearrangements than nonmethylated NFs. However, the carbamoyl residue on the nonreducing terminal residue and the acetyl group at the fucosyl residue on the reducing terminal residue do not seem to have any effect on root hair curling induction or in actin cytoskeleton rearrangement.  相似文献   

14.
15.
Reprogramming of somatic cells to induced pluripotent stem cells (iPSC) provides an important cell source to derive patient-specific cells for potential therapeutic applications. However, it is not yet clear whether reprogramming through pluripotency allows the production of differentiated cells with improved functional properties that may be beneficial in regenerative therapies. To address this, we compared the production and assembly of extracellular matrix (ECM) by iPSC-derived fibroblasts to that of the parental, dermal fibroblasts (BJ), from which these iPSC were initially reprogrammed, and to fibroblasts differentiated from human embryonic stem cells (hESC). iPSC- and hESC-derived fibroblasts demonstrated stable expression of surface markers characteristic of stromal fibroblasts during prolonged culture and showed an elevated growth potential when compared to the parental BJ fibroblasts. We found that in the presence of l-ascorbic acid-2-phosphate, iPSC- and hESC-derived fibroblasts increased their expression of collagen genes, secretion of soluble collagen, and extracellular deposition of type I collagen to a significantly greater degree than that seen in the parental BJ fibroblasts. Under culture conditions that enabled the self-assembly of a 3D stromal tissue, iPSC- and hESC-derived fibroblasts generated a well organized, ECM that was enriched in type III collagen. By characterizing the functional properties of iPSC-derived fibroblasts compared to their parental fibroblasts, we demonstrate that these cells represent a promising, alternative source of fibroblasts to advance future regenerative therapies.  相似文献   

16.
Matrix metalloproteinases (MMPs) play a critical role in tumor development and invasion. The aim of this study was to elucidate peculiarity of expression of interstitial collagenase (MMP-1) and its endogenous regulators during oncogenic transformation of fibroblasts by HPV-16 E7 gene. Papilloma virus types 16 and 18 are etiological factor of cervical cancer. We have studied expression of MT1-MMP, MMP-1, tissue inhibitor of these proteases, TIMP-1, and urokinase-like plasminogen activator (uPA), activating MMP-1 via plasmin. The study was carried out using fibroblasts immortalized by LT gene (IF) and transformed by E7 gene of HPV-16 fibroblasts (TF). Primary culture of Fisher rat embryo fibroblasts was used as a control (PF). mRNA expression, and enzymatic activity were studied by RT-PCR and by hydrolysis of fluorogenic type I collagen, respectively. Cell transformation was accompanied by: (a) 2–3 fold induction of MT1-MMP mRNA expression vs PF; (b) the decrease in mRNA level of TIMP-1 (1,5–2 fold); c) unchanged uPA expression. Cell immortalization is accompanied by: (a) the increase of MT1-MMP expression (1,5–2 fold); (b) unchanged TIMP-1 expression; (c) the increase of uPA expression (2–4 fold) vs PF and TF. MMP secreted activity and activity in lysates of TF increased but level of free endogenous MMP inhibitors decreased vs IF. Data on gene expression are consistent with enzymatic data on the collagenolytic activity. These results suggest changes in enzyme/inhibitor/activator ratio both TF and IF and significant enhancement of the destructive potential of the TF.  相似文献   

17.
Stress proteins (heat shock proteins [hsps]) serve a number of protective functions, including protection from apoptosis and acting as chaperones during protein biosynthesis. For example, hsp 27 has been defined as a chaperone for the G3 domain of aggrecan, while hsp 47 is the chaperone for type I collagen. Separate cytoprotective roles for hsp 27 and hsp 70 have been demonstrated. The aim of this study was to define the expression of hsps in osteoblastic and chondrocytic cells of the growing rat long bone in relationship to the immunohistochemical localization of aggrecan, type I collagen and the presence of fragmented DNA that defines apoptotic events. Tibiae were harvested from Fisher 344 rats (n=6) and fixed in 10% buffered formalin. Samples were decalcified in 10% EDTA, bisected, and processed for histologic examination. Sections (5 mm) were immunohistochemically stained using a streptavidin-biotin detection method. Co-localization of hsps with apoptosis was achieved using the TUNEL procedure. In the rat tibia growth plate, aggrecan was generally distributed throughout cartilage and chondrocytes. However, hsp 27 expression was observed only in the lower hypertrophic chondrocytes. hsp27 was present in osteoblasts lining newly formed bone. hsp 47 staining was also prominent within these osteoblasts where collagen type I immunolocalization occurred. The inducible form of hsp 70 was localized to the osteoblastic cells lining new bone in the primary spongiosa. In cartilage, DNA fragmentation was restricted to the hypertrophic, hsp27-positive, chondrocytes. In contrast, DNA fragmentation was not co-localized with hsp27-positive osteoblastic cells of the primary spongiosa, although occasional apoptotic cells were identified. These results indicate that apoptosis is a mechanism by which hypertrophic chondrocytes are eliminated from cartilage prior to calcification, but that other mechanisms are also likely to be involved. They also suggest that hsps have cytoprotective and biosynthetic functions within osteoblasts and chondrocytes, but apoptotic signals may override these effects in some instances, resulting in apoptosis.  相似文献   

18.
Monolayer cultures of 3T3 and WI-38 fibroblasts were pulse labeled with radioactive leucine in the presence of cycloheximide. The rate of protein degradation was measured and compared with that of SV-40 virus transformed cells. The results clearly show that normal and transformed cells have essentially identical rates of degradation of proteins synthesized in the presence of cycloheximide. These findings indicate that the lower rates of protein degradation observed in some transformed cells is not a general rule.  相似文献   

19.
Studies of astronauts, experimental animals, and cells have shown that, after spaceflights, the function of the thyroid is altered by low-gravity conditions. The objective of this study was to investigate the cytoskeleton and extracellular matrix (ECM) protein synthesis of papillary thyroid cancer cells grown under zero g. We investigated alterations of ONCO-DG 1 cells exposed to simulated microgravity on a three-dimensional random-positioning machine (clinostat) for 30 min, 24 h, 48 h, 72 h, and 120 h (n=6, each group). ONCO-DG 1 cells grown under microgravity exhibited early alterations of the cytoskeleton and formed multicellular spheroids. The cytoskeleton was disintegrated, and nuclei showed morphological signs of apoptosis after 30 min. At this time, vimentin was increased. Vimentin and cytokeratin were highly disorganized, and microtubules (α–tubulin) did not display their typical radial array. After 48 h, the cytoskeletal changes were nearly reversed. The formation of multicellular spheroids continued. In parallel, the accumulation of ECM components, such as collagen types I and III, fibronectin, chondroitin sulfate, osteopontin, and CD44, increased. The levels of both transforming growth factor beta-1 (TGF-β1) and TGF-β receptor type II proteins were elevated from 24 h until 120 h clinorotation. Gene expression of TGF-β1 was clearly enhanced during culture under zero g. The amount of E-cadherin was enhanced time-dependently. We suggest that simulated weightlessness rapidly affects the cytoskeleton of papillary thyroid carcinoma cells and increases the amount of ECM proteins in a time-dependent manner.The work of Augusto Cogoli was supported by ETH Zurich, Switzerland.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号