共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structural aspects of the sarcoplasmic reticulum K+ channel revealed by gallamine block. 总被引:1,自引:0,他引:1 下载免费PDF全文
We have studied single-channel conductance fluctuations of K+ channels present in the sarcoplasmic reticulum (SR) membrane systems of rabbit cardiac and skeletal muscle. K+ conductance through the channels is reversibly blocked by gallamine. Conductance block occurs only from the trans side of the channel and is resolved as a smooth reduction in the open state conductance. At a fixed K+ concentration, conduction decreases with increasing gallamine concentration and the data can be fitted to a single-site inhibition scheme. The degree of block seen at a constant gallamine concentration decreases as K+ concentration is increased, indicating competition between gallamine and K+. Gallamine block is voltage dependent, the degree of block increasing with increasing negative holding potential. Quantitative analysis of block yields a zero voltage dissociation constant of 55.3 +/- 16 microM and an effective valence of block of 0.93 +/- 0.12. We conclude that gallamine blocks by interacting with a site or sites located at an electrical distance 30-35% into the voltage drop from the trans side of the channel. This site must have a cross-sectional area of at least 1.2 nm2. The results of this study have been used to modify and extend our view of the structure of the channel's conduction pathway. 相似文献
3.
An anion channel of sarcoplasmic reticulum incorporated into planar lipid bilayers: Single-channel behavior and conductance properties 总被引:2,自引:0,他引:2
Summary An anion channel of sarcoplasmic reticulum vesicle has been incorporated into planar lipid bilayers by means of a fusion method and its basic properties were investigated. Analysis of fusion processes suggested that one SR vesicle contained approximately one anion channel. The conductance of this channel has several substates and shows a flickering behavior. The occupation probability of each substate was voltage dependent, which induced an inward rectification of macroscopic currents. Further, the anion channel was found to have the following properties. (1) The single-channel conductance is about 200 pS at 100mm Cl–. (2) The channel does not select among monovalent anions but SO
4
2–
hardly permeates through the channel. (3) SO
4
2–
added to thecis side (the side to which SR vesicles were added) inhibits Cl– current competitively in a voltage-dependent manner. (4) An analysis of this voltage dependence suggests that the binding site of SO
4
2–
is located at about 36% of the way across the channel from thecis entrance. 相似文献
4.
K+-selective ion channels from mammalian sarcoplasmic reticulum were inserted into planar phospholipid bilayers, and single-channel currents measured in solutions containing Cs+. Current through this channel can be observed in symmetrical solutions containing only Cs+ salts. At zero voltage, the Cs+ conductance is approximately 15-fold lower than the corresponding K+ conductance. The open channel rectifies strongly in symmetrical Cs+ solutions, and the Cs+ currents are independent of Cs+ concentration in the range 18-600 mM. Biionic (Cs+/K+) reversal potentials are only 10 mV, showing that Cs+ is nearly as permeant as K+, though much less conductive. Addition of Cs+ to symmetrical K+ solutions reduces current through the channel in a voltage-dependent way. The results can be explained by a free energy profile in which the channel's selectivity filter acts in two ways: to provide binding sites for the conducting ions and to serve as a major rate-determining structure. According to this picture, the main difference between high-conductance K+ and low-conductance Cs+ is that Cs+ binds to an asymmetrically positioned site approximately 20-fold more tightly than does K+. 相似文献
5.
F A Lai M Misra L Xu H A Smith G Meissner 《The Journal of biological chemistry》1989,264(28):16776-16785
The subunit structure of the rabbit skeletal muscle ryanodine receptor-Ca2+ release channel complex was examined following solubilization of heavy sarcoplasmic reticulum membranes in two zwitterionic detergents, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (Chaps) and Zwittergent 3-14. High and low affinity [3H]ryanodine binding was retained upon solubilization of the complex in Chaps but was lost in Zwittergent 3-14. The purified complex migrated as a single peak with an apparent sedimentation coefficient of approximately 30 and approximately 9 S upon density gradient centrifugation and with isoelectric points of 3.7 and 3.9 upon two-dimensional gel electrophoresis in Chaps and Zwittergent 3-14, respectively. Electron microscopy of negatively stained samples indicated that the distinct four-leaf clover structure of the ryanodine receptor observed in Chaps disappeared following Zwittergent treatment of the 30 S complex and instead showed smaller, round particles. Ferguson plot analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partial and fully cross-linked and incompletely denatured complexes suggested a stoichiometry of four Mr approximately 400,000 peptides/30 S ryanodine receptor oligomer. [3H]Ryanodine binding to the membrane-bound receptor in 50 microM--1 mM free Ca2+ revealed the presence of both high affinity (KD = 8 nM, Hill coefficient (nH) = 0.9) and low affinity (nH approximately 0.45) sites with a ratio of 1:3. Reduction in free Ca2+ to less than or equal to 0.1 microM or trypsin digestion of the membranes resulted in loss of high affinity but not low affinity ryanodine binding (Hill KD = 5,000 nM, nH = 0.9). Addition of 20 mM caffeine to the nanomolar Ca2+ medium decreased the Hill KD to 1,000 nM without changing the Hill coefficient. Occupation of the low affinity sites altered the rate of [3H]ryanodine dissociation from the high affinity sites. Single channel recordings of the purified ryanodine receptor channel incorporated into planar lipid bilayers also indicated the existence of high and low affinity sites for ryanodine, occupation of which resulted in formation of a subconducting and completely closed state of the channel, respectively. These results are compatible with a subunit structural model of the 30 S ryanodine receptor-Ca2+ release channel complex which comprises a homotetramer of negatively charged and allosterically coupled polypeptides of Mr approximately 400,000. 相似文献
6.
Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers 总被引:1,自引:10,他引:1 下载免费PDF全文
A collection of organic cations has been used to probe the gross structural features of the ionic diffusion pathway in a K+-selective channel from sarcoplasmic reticulum (SR). Channels were incorporated into planar phospholipid bilayer membranes, and single-channel currents were measured in the presence of ammonium-derived cations in the aqueous phases. Small monovalent organic cations are able to permeate the channel: the channel conductance drops sharply for cations having molecular cross sections larger than 18-20 A2. Impermeant or poorly permeant cations such as tetraethylammonium, choline, and glucosamine, among others, block K+ conduction through the channel. This block is voltage dependent and can be described by a one-site, one-ion blocking scheme. 19 monovalent organic cations blocks primarily from the trans side of the membrane (the side defined as zero voltage), and much more weakly, if at all, from the cis side (to which SR vesicles are added). These blockers all appear to interact with a site located at 63% (average value) of the electric potential drop measured from the trans side. Furthermore, block by 1,3-bis[tris(hydroxymethyl)-methylamino] propane (BTP) shows that the presence of a blocking ion increases the duration of the apparent open state, as expected for a scheme in which the blocking site can be reached only when the channel is open. The results lead to a picture of the channel containing a wide (at least 50 A2) nonselective trans entry in series with a narrow (20 A2) constriction. 相似文献
7.
Summary Potassium and sodium cation permeabilities of skeletal sarcoplasmic reticulum vesicles were characterized by means of3H-choline,22Na+ and86Rb+ isotope efflux and membrane potential measurements. Membrane potentials were generated by diluting K gluconate filled sarcoplasmic reticulum vesicles and liposomes into Tris or Na gluconate media, in the presence or absence of valinomycin, and were measured using the voltage-sensitive membrane probe 3,3-dipentyl-2,2-oxacarbocyanine. About 2/3 of the sarcoplasmic reticulum vesicles, designated Type I, were found to be permeable to Rb+, K+ and Na+. The remaining 1/3, Type II vesicles, were essentially impermeable to these ions. The two types of vesicles were impermeable to larger cations such as choline or Tris. Both were present in about the same ratio in fractions derived from different parts of the reticulum structure. Studies with cations of different size and shape suggested that in Type I vesicles permeation was restricted to molecules fitting through a pore with a cross-section of 4–5 Å by 6 Å or more. When vesicles were sonicated, vesicles permeable to K+ decreased more than those impermeable to K+. These data suggest the existence of K+, Na+ permeable channels which are probably randomly dispersed in the intact reticulum structure at an estimated density of 50 pores/m2. The function of the channel may be to allow rapid K+ movement to counter Ca2+ fluxes during muscle contraction and relaxation. 相似文献
8.
Permeation of neutral molecules as well as Ca2+ through the Ca2+ channel in sarcoplasmic reticulum vesicles has been studied by the tracer and/or by the light scattering methods. In the absence of KCl, the Ca2+ channel was found not to be able to pass neutral molecules such as glucose, xylose, and glycine under the condition that the channel was open, although the channel could pass Ca2+. On the other hand, submolar concentrations of KCl made the channel become permeable to neutral molecules as well as Ca2+. Since the effect of KCl could be replaced by NaCl and KNO3, but not by sucrose and glucose, this effect of KCl is considered to be due to ionic strength and not to osmotic pressure. These results suggest that low ionic strength transforms the Ca2+ channel protein in such a manner as to block the permeation of neutral molecules without modifying the gating mechanism of the channel. 相似文献
9.
Bis-quaternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel 总被引:8,自引:8,他引:8 下载免费PDF全文
C Miller 《The Journal of general physiology》1982,79(5):869-891
A series of n-alkyl-bis-alpha,omega-trimethylammonium (bisQn) compounds was synthesized, and their ability to block K+ currents through a K+ channel from sarcoplasmic reticulum was studied. K+ channels were inserted into planar phospholipid membranes, and single-channel K+ currents were measured in the presence of the blocking cations. These bisQn compounds block K+ currents only from the side of the membrane opposite to the addition of SR vesicles (the trans side). The block is dependent on transmembrane voltage, and the effective valence of the block (a measure of this voltage dependence) varies with the methylene chain length. For short chains (bisQ2-bisQ5), the effective valence decreases with chain length from 1.1 to 0.65; it then remains constant at approximately 0.65 for bisQ5 to bisQ8; the effective valence abruptly increases to 1.2-1.3 for chains of nine carbons and longer. For the compounds of nine carbons and longer, the discrete nature of the block can be observed directly as 'flickering noise" on the open channel. The kinetics of the block were studied for these long-chain blockers. Both blocking and unblocking rates of the blockers vary with chain length, with the blocking rate showing the strongest variation--an increase of 2.8-fold per added methylene group. All of the voltage dependence of the binding equilibrium resides in the blocking rate, and none in the unblocking rate. The results imply that 65% of the voltage drop within the channel occurs over a distance of 6-7A, and that the short-chain blockers bind in a bent-over conformation with both charges deeply inside the channel. 相似文献
10.
Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum. 总被引:3,自引:3,他引:0 下载免费PDF全文
C Miller 《Biophysical journal》1982,38(3):227-230
Streaming potentials arising across a K+-selective channel from fragmented sarcoplasmic reticulum were measured by incorporating the channel into planar bilayer membranes and imposing osmotic gradients across the membranes by addition of sorbitol or urea to only one side. Single-channel zero-current potentials were determined, and dilution artifacts were corrected for by addition of valinomycin to the bilayer. The streaming potentials were found to be unusually small, 1.1 mV per osmolal. The potentials were linearly related to the osmotic gradient across the bilayer, and were identical for sorbitol and urea. The results imply that the channel cannot be envisioned as a long tube, like gramicidin, but rather as a short constriction of less than 10 A in length opening out into wider mouths on either side of the membrane. 相似文献
11.
K+-selective channel from sarcoplasmic reticulum of split lobster muscle fibers 总被引:1,自引:0,他引:1 下载免费PDF全文
The patch clamp technique has been used to study channels in a membrane inside a cell. A single muscle fiber is skinned in relaxing saline (high K+, low Ca2+ with EGTA and ATP), leaving the native sarcoplasmic reticulum (SR) membrane exposed for patching. Fibers are dissected from the second antenna remotor muscles of the American lobster, Homarus americanus. Transmission and scanning electron microscopy confirm the large volume fraction of SR (approximately 70%) and absence of sarcolemma in this unusual skinned preparation. The resting potential of the SR was measured after the resistance of the patch of membrane was broken down. It is near 0 mV (-0.4 +/- 0.6 mV). The average input resistance of the SR is 842 +/- 295 M omega. Some 25% of patches contain a K+-selective channel with a mean open time of seconds and the channel displays at least two conducting states. The open probability is weakly voltage dependent, large at zero and positive potentials (cytoplasm minus SR lumen), and decreasing at negative potentials. The maximal conductance of this channel is 200 +/- 1 pS and the substate conductance is 170 +/- 3 pS in symmetrical 480 mM K+ solution. The current-voltage relation of the open channel is linear over a range of +/- 100 mV. The selectivity is similar to the SR K+ channel of vertebrates: PK/PNa is 3.77 +/- 0.03, determined from reversal potential measurements, whereas gamma K/gamma Na is 3.28 +/- 0.06, determined from open-channel conductance measurements in symmetrical 480 mM solutions. Voltage-dependent block in the lobster SR K+ channel is similar to, but distinct from, that reported for the vertebrate channels. It occurs asymmetrically when hexamethonium is added to both sides of the membrane. The block is more effective from the cytoplasmic side of the channel. 相似文献
12.
Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. 总被引:10,自引:5,他引:10 下载免费PDF全文
Single-channel K+ currents through sarcoplasmic reticulum K+ channels were compared after reconstitution into planar bilayers formed from neutral or negatively charged phospholipids. In neutral bilayers, the channel conductance saturates with K+ concentration according to a rectangular hyperbola, with half-saturation at 40 mM K+, and maximum conductance of 220 pS. In negatively charged bilayers (70% phosphatidylserine/30% phosphatidylethanolamine), the conductance is, at a given K+ concentration, higher than in neutral bilayers. This effect of negative surface charge is increasingly pronounced at lower ionic strength. The maximum conductance at high K+ approaches 220 pS in negative bilayers, and the channel's ionic selectivity is unaffected by lipid charge. The divalent channel blocker " bisQ11 " causes discrete blocking events in both neutral and negatively charged bilayers; the apparent rate constant of blocking is sensitive to surface charge, while the unblocking rate is largely unaffected. Bilayers containing a positively charged phosphatidylcholine analogue led to K+ conductances lower than those seen in neutral bilayers. The results are consistent with a simple mechanism in which the local K+ concentration sensed by the channel's entryway is determined by both the bulk K+ concentration and the bulk lipid surface potential, as given by the Gouy-Chapman model of the electrified interface. To be described by this approach, the channel's entryway must be assumed to be located 1-2 nm away from the lipid surface, on both sides of the membrane. 相似文献
13.
Grazyna Szymanska Hae Won Kim John Cuppoletti Evangelia G. Kranias 《Molecular and cellular biochemistry》1992,114(1-2):65-71
The Ca2+-ATPase of skeletal sarcoplasmic reticulum was purified and reconstituted in proteoliposomes containing phosphatidylcholine (PC). When reconstitution occurred in the presence of PC and the acidic phospholipids, phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP), the Ca2+-uptake and Ca2+-ATPase activities were significantly increased (2–3 fold). The highest activation was obtained at a 50:50 molar ratio of PSYC and at a 10:90 molar ratio of PIP:PC. The skeletal SR Ca2+-ATPase, reconstituted into either PC or PC:PS proteoliposomes, was also found to be regulated by exogenous phospholamban (PLB), which is a regulatory protein specific for cardiac, slow-twitch skeletal, and smooth muscles. Inclusion of PLB into the proteoliposomes was associated with significant inhibition of the initial rates of Ca2+-uptake, while phosphorylation of PLB by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effects. The effects of PLB on the reconstituted Ca2+-ATPase were similar in either PC or PC: PS proteoliposomes, indicating that inclusion of negatively charged phospholipid may not affect the interaction of PLB with the skeletal SR Ca2+-ATPase. Regulation of the Ca2+-ATPase appeared to involve binding with the hydrophilic portion of phospholamban, as evidenced by crosslinking experiments, using a synthetic peptide which corresponded to amino acids 1–25 of phospholamban. These findings suggest that the fast-twitch isoform of the SR Ca2+-ATPase may be also regulated by phospholamban although this regulator is not expressed in fast-twitch skeletal muscles. 相似文献
14.
15.
Voltage and temperature dependence of single K+ channels isolated from canine cardiac sarcoplasmic reticulum. 总被引:1,自引:0,他引:1 下载免费PDF全文
W. K. Shen R. L. Rasmusson Q. Y. Liu A. L. Crews H. C. Strauss 《Biophysical journal》1993,65(2):747-754
The temperature and voltage dependence of gating and conductance of sarcoplasmic reticulum K+ channels (S-R K+) isolated from adult canine hearts were studied using the reconstituted bilayer technique. Fusion of vesicles from this preparation frequently resulted in the incorporation of a single channel. Only bilayers into which a single S-R K+ channel had fused were studied. The three conductance states of the channel, fully open (O2), substate conductance (O1), and closed (C) were studied as a function of voltage (-50 to +50 mV) and temperature (16 to 37 degrees C). Permeation through the O1 state showed the same temperature dependence as the O2 state corresponding to an enthalpy of permeation of 4.1-4.2 kcal/mol, which is similar to that for K+ diffusion through water. As expected, increased temperature increased the frequency of gating transitions and shortened the average dwell time spent in any conductance state. Over the range of 25 to 37 degrees C, the average dwell time spent in the O1, O2, and C states decreased by 44 +/- 11, 36 +/- 13, and 78 +/- 7% (n = 3 to 4 channels), respectively. The ratio of probabilities between the various conductance states was not strongly temperature sensitive. Analysis of the voltage dependence of this channel was carried out at 37 degrees C and revealed that the dwell times of the O1 and O2 states were voltage insensitive and the probability ratio (PO2:PO1) was approximately 7 and was voltage insensitive.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Single chloride-selective channel from cardiac sarcoplasmic reticulum studied in planar lipid bilayers 总被引:1,自引:0,他引:1
Eric Rousseau 《The Journal of membrane biology》1989,110(1):39-47
Summary The behavior of single Cl– channel was studied by fusing isolated canine cardiac sarcoplasmic reticulum (SR) vesicles into planar lipid bilayers. The channel exhibited unitary conductance of 55 pS (in 260mm Cl–) and steady-state activation. Subconductance states were observed. Open probability was dependent on holding potentials (–60 to +60 mV) and displayed a bell-shaped relationship, with probability values ranging from 0.2 to 0.8 with a maximum at –10 mV. Channel activity was irreversibly inhibited by DIDS, a stilbene derivative. Time analysis revealed the presence of one time constant for the full open state and three time constants for the closed states. The open and the longer closed time constants were found to be voltage dependent. The behavior of the channel was not affected by changing Ca2+ and Mg2+ concentrations in both chambers, nor by adding millimolar adenosine triphosphate, or by changing the pH from 7.4 to 6.8. The presence of sulfate anions decreased the unit current amplitude, but did not affect the open probability. These results reveal that at the unitary level the cardiac SR anion-selective channel has distinctive as well as similar electrical properties characteristic of other types of Cl– channels. 相似文献
17.
Blockade of cardiac sarcoplasmic reticulum K+ channel by Ca2+: two-binding-site model of blockade. 下载免费PDF全文
Potassium countercurrent through the SR K+ channel plays an important role in Ca2+ release from the SR. To see if Ca2+ regulates the channel, we incorporated canine cardiac SR K+ channel into lipid bilayers. Calcium ions present in either the SR lumenal (trans) or cytoplasmic (cis) side blocked the cardiac SR K+ channel in a voltage-dependent manner. When Ca2+ was present on both sides, however, the block appeared to be voltage independent. A two-binding site model of blockade by an impermeant divalent cation (Ca2+) can explain this apparent contradiction. Estimates of SR Ca2+ concentration suggest that under physiological conditions the cardiac SR K+ channel is partially blocked by Ca2+ ions present in the lumen of the SR. The reduction in lumenal [Ca2+] during Ca2+ release could increase K+ conductance. 相似文献
18.
The Ca2(+)-ATPase of skeletal sarcoplasmic reticulum was purified and reconstituted in the presence of phosphatidyl choline using the freeze-thaw sonication technique. The effect of incorporation of negatively charged phospholipids, phosphatidylserine and phosphatidylinositol phosphate, into the phosphatidylcholine proteoliposomes was investigated. Various ratios of phosphatidylserine or phosphatidylinositol phosphate to phosphatidylcholine were used, while the total amount of phospholipid in the reconstituted vesicles was kept constant. Enrichment of phosphatidylcholine proteoliposomes by phosphatidylserine or phosphatidylinositol phosphate was associated with activation of Ca2(+)-uptake and Ca2(+)-ATPase activities. The highest activation was obtained at a 50:50 molar ratio of phosphatidylserine:phosphatidylcholine and at a 10:90 molar ratio of phosphatidylinositol phosphate:phosphatidylcholine. The initial rates of Ca2(+)-uptake obtained at 1 microM Ca2+ were 2.6 +/- 0.1 mumol/min per mg of phosphatidylserine:phosphatidylcholine proteoliposomes and 1.5 +/- 0.1 mumol/min per mg of phosphatidylinositol phosphate:phosphatidylcholine proteoliposomes, compared to 0.9 +/- 0.05 mumol/min per mg of phosphatidylcholine proteoliposomes. These findings suggest that negatively charged phospholipids may be involved in the activation of the reconstituted skeletal muscle sarcoplasmic reticulum Ca2(+)-pump. 相似文献
19.
Permeability of reconstituted sarcoplasmic reticulum vesicles: Reconstitution of the K+, Na+ channel
Permeability properties of reconstituted rabbit skeletal muscle sarcoplasmic reticulum vesicles were characterized by measuring efflux rates of [3H]inulin, [3H]choline+, 86Rb+, and 22Na+, as well as membrane potential changes using the voltage-sensitive probe, 3,3′-dipentyl-2,2′-oxacarbocyanine. Native vesicles were dissociated with deoxycholate and were reconstituted by dialysis. Energized Ca2+ accumulation was partially restored. About of the reconstituted vesicles were found to be ‘leaky’, i.e., permeable to choline+ or Tris+ but not to inulin. The remaining reconstituted vesicles were ‘sealed’, i.e., impermeable to choline+, Tris+ and inulin. Sealed reconstituted vesicles could be further subdivided according to their K+, Na+ permeability. About , previously designated Type I, were readily permeable to K+ and Na+, indicating the presence of the K+, Na+ channel of sarcoplasmic reticulum. The remaining sealed vesicles (Type II) formed a permeability barrier to K+ and Na+, suggesting that they lacked the K+, Na+ channel. These studies show that the K+, Na+ channel of sarcoplasmic reticulum can be solubilized with detergent and reconstituted with retention of activity. Furthermore, our results suggest that part or all of the decreased Ca2+-loading efficiency of reconstituted vesicles may be due to the presence of a significant fraction of leaky vesicles. 相似文献
20.
Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum. 总被引:5,自引:5,他引:5 下载免费PDF全文
The CHAPS-solubilized and purified 30S ryanodine receptor protein complex from skeletal sarcoplasmic reticulum (SR) was incorporated into planar lipid bilayers. The resulting electrical activity displayed similar responses to agents such as Ca2+, ATP, ryanodine, or caffeine as the native Ca2+ release channel, confirming the identification of the 30S complex as the Ca2+ release channel. The purified channel was permeable to monovalent ions such as Na+, with the permeability ratio PCa/PNa approximately 5, and was highly selective for cations over anions. The purified channel also showed at least four distinct conductance levels for both Na+ and Ca2+ conducting ions, with the major subconducting level in NaCl buffers possessing half the conductance value of the main conductance state. These levels may be produced by intrinsic subconductances present within the channel oligomer. Several of these conductances may be cooperatively coupled to produce the characteristic 100 +/- 10 pS unitary Ca2+ conductance of the native channel. 相似文献