首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A diverse collection of xanthine-metabolizing bacteria was examined for xanthine-, 1-methylxanthine-, and 3-methylxanthine-oxidizing activity. Both particulate and soluble fractions of extracts from aerobically grown gram-negative bacteria exhibited oxidation of all three substrates; however, when facultative gram-negative bacteria were grown anaerobically, low particulate and 3-methylxanthine activities were detected. Gram-positive and obligately anaerobic bacteria showed no particulate activity or 3-methylxanthine oxidation. Substrate specificity studies indicate two types of enzyme distributed among the bacteria along taxonomic lines, although other features indicate diversity of the enzyme within these two major groups. The soluble and particulate enzymes from Pseudomonas putida and the enzyme from Arthrobacter S-2 were examined as type examples with a series of purine and analogues differing in the number and position of oxygen groups. Each preparation was active with a variety of compounds, but the compounds and position attacked by each enzyme was different, both from the other enzymes examined and from previously investigated enzymes. The soluble enzyme from Pseudomonas was inhibited in a competitive manner by uric acid, whereas the Arthrobacter enzyme was not. This was correlated with the ability of Pseudomonas, but not Arthrobacter, to incorporate radioactivity from [2-14C]uric acid into cellular material.  相似文献   

4.
Xanthine oxidase (1--5 microgram/ml) from cow's milk induces shape change, aggregation, and the release reaction of human washed platelets. Xanthine oxidase plus xanthine produce superoxide radicals, which reduce nitro blue tetrazolium. Superoxide dismutase, allopurinol, or ommission of xanthine inhibits the reduction of nitro blue tetrazolium but has no influence on the platelet response to xanthine oxidase. In contrast, small amounts of plasma or apyrase from potatoes abolish the effect on platelets, but not the enzyme activity of xanthine oxidase. Comparison of two xanthine oxidase preparations shows that higher specific enzyme activity corresponds to a lesser effect on platelets. The results suggest that platelet and enzyme activities reside in different components of xanthine oxidase preparations.  相似文献   

5.
A method to purify bovine liver xanthine oxidase in described, with which samples of 256-fold specific activity with respect to the initial homogenate are obtained. Bovine liver xanthine oxidase and chicken liver xanthine dehydrogenase with oxygen as electron acceptor exhibit similar profile in pKM and log V versus pH plots. With NAD+ as electron acceptor a different profile in the pKM xanthine plot is obtained for chicken liver xanthine dehydrogenase. However three inflection points at the same pH values appear in all plots. Both enzymes are irreversibly inhibited by pCMB and reversibly by N-ethylmaleimide and by iodoacetamide, with competitive and uncompetitive type inhibitions respectively. These results suggest that NAD+ alters the enzymatic action since its binding to the enzyme antecedes the binding of xanthine to the xanthine oxidase molecule, without undergoing itself any modification. 0.15 M DDT of DTE treatment of bovine liver xanthine oxidase gives to the enzyme a permanent activity with NAD+ without modifying its activity with oxygen. The enzyme thus treated produces parallel straight lines in Lineweaver-Burk plots.  相似文献   

6.
Formamide as a substrate of xanthine oxidase.   总被引:1,自引:1,他引:0       下载免费PDF全文
Formamide is a substrate of xanthine oxidase. At pH 8.2 and 1.14 mM-O2, Vmax.(app.) is 3.1 s-1 and Km (app.) is 0.7 M. Mo(V) e.p.r. signals obtained by treating the enzyme with formamide were studied, and these provide new information about the ligation of molybdenum in the enzyme and about the enzymic mechanism. The substrate is the first compound that is not a nitrogen-containing heterocycle to give a Very Rapid signal. This supports the hypothesis that the Very Rapid signal, though it is not detectable with all substrates, represents an essential intermediate in turnover. Formamide also gives the Inhibited signal and is the first non-aldehyde substrate to do so. The Rapid type 1 signal obtained in the presence of formamide was examined in H2O enriched with 2H or with 17O. The single oxygen atom detectable in the signal is shown to be strongly and anisotropically coupled. This indicates that this atom remains as an oxo ligand of molybdenum in this signal-giving species. Other structural features of this species are discussed.  相似文献   

7.
Improved xanthine oxidase purification   总被引:4,自引:0,他引:4  
  相似文献   

8.
Rat fibrinogen was purified from rat plasma by using lysine–Sepharose chromatography, repeated precipitation with 25%-satd. (NH4)2SO4 and gel chromatography on Sepharose 6B. To minimize proteolytic activity, rats were injected intravenously with Trasylol before bleeding and the collected blood was treated with Trasylol and di-isopropyl phosphorofluoridate. A 95%-clottable preparation was obtained in 70–75% yield; it proved to be free of factor XIII and plasminogen. It showed a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and on disc electrophoresis in 8m-urea. Alanine was the only detectable N-terminal amino acid. After reduction and modification of the thiol groups, the material could be separated into three distinct chains (Aα, Bβ and γ) by pore-limit polyacrylamide slab-gel electrophoresis in the presence of sodium dodecyl sulphate. The amino acid compositions of the whole fibrinogen and of the separated modified chains were determined. The molecular weights were 61000, 58000 and 51000 for Aα-, Bβ- and γ-chains respectively. Our results for the chains are in contrast with previous reports on rat fibrinogen [Bouma & Fuller (1975) J. Biol. Chem. 250, 4678–4683; Stemberger & Jilek (1976) Thromb. Res. 9, 657–660], in which no separation between Aα- and Bβ-chains was achieved on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis for 3h. Evidence is presented that this is probably due to Aα-chain degradation as a result of incomplete inhibition of proteolytic enzymes during the purification. Complete inhibition of proteolytic activities is essential in all steps of the present purification procedure.  相似文献   

9.
The stability of immobilized preparations of xanthine oxidase and urate oxidase was studied, and optimized, because of the potential joint use of both enzymes in clinical analysis. Xanthine oxidase was immobilized on cellulose, Sepharose, hornblende, Enzacryl-TIO, and porous glass. Thehalf-lives of these preparations at 30 degree C ranged from 40 min to 5.0 hr. In this respect immobilized enzyme resembled soluble enzyme in dilute solution (0.11 mg/ml), when the half-live was about 3.5 hr. More concentrated enzyme solution (1 mg/ml) had a half-life of 64 hr, and was, therefore, considerably more stable than the untreated immobilized xanthine oxidase preparations. Inclusion of albumen in storage and assay buffer increased the half-life of bound xanthine oxidase. So also did treatment with glutaraldehyde: in the case of xanthine oxidase bound to Enzarcyl-TIO such treatment increased the half-life at 30 degree C from 3 hr to about 100 hr. Immobilized xanthine dehydrogenase was more stable than immobilized xanthine oxidase: the dehydrogenase lost no activity during continuous assay for 5 hr at 30 degree C. The stability of immobilized urate oxidase depended on the quantity of enzyme used and on the time of stirring during immobilization: thus a preparation was made (by stirring urate oxidase (48 mg/g support) with Enzacryl-TIO for 24 hr) which lost no activity during 350 hr at 30 degree C.  相似文献   

10.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

11.
12.
13.
14.
15.
Bacterial xanthine oxidase from Arthrobacter S-2.   总被引:4,自引:1,他引:3       下载免费PDF全文
Arthrobacter S-2, originally isolated by enrichment on xanthine, produced high levels of xanthine oxidase activity, requiring as little as a 20-fold purification to approach homogeneity with some preparations. Molecular oxygen, ferricyanide, and 2,6-dichlorophenol-indophenol served as electron acceptors, but nicotinamide adenine dinucleotide did not. The enzyme was relatively specific when compared with previously studied xanthine-oxidizing enzymes, but at least one purine was observed to be oxidized at each of the three positions of the purine ring that have been subject to oxidation by this type of enzyme. The enzyme had a relatively high Km for xanthine (1.3 X 10(-4) M), and substrate inhibition was not observed with this compound, in contrast to the enzyme from cow's milk. In fact, an opposite effect was observed, and double-reciprocal plots with xanthine as the variable substrate showed a concave downward deviation at high concentrations. At 2.5 mM xanthine the enzyme had a specific activity approximately 50 times that of the most active preparations of the milk enzyme. The spectrum of the Arthrobacter enzyme resembled that of milk xanthine oxidase, suggesting a similarity of the prosthetic centers of the two enzymes. The bacterial enzyme was relatively small and may be dimeric, with approximate native and subunit molecular weights of 146,000 and 79,000, respectively.  相似文献   

16.
Electron-electron double resonance measurements were carried out on milk xanthine oxidase (xanthine:oxygen oxidoreductase EC 1.2.3.2) and the spectra obtained supported a previous model, based on EPR data, proposing a spin-spin interaction between unpaired electrons associated with Fe-S and Mo. The technique demonstrated that the additional apparently isotropic, splitting in the Mo EPR spectra observed at low temperature is produced by a single site giving two spectra interconverting at a rate consistent with the Fe-S spin lattice relaxation time. Other data concerning the model and the relaxation behaviour of the species are discussed.  相似文献   

17.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

18.
The role of xanthine oxidase in the mechanism of paraquat toxicity was assessed by in vitro and in vivo experiments. Paraquat stimulated the reduction of cytochrome c by xanthine-xanthine oxidase system in vitro. Paraquat, when added in vitro, stimulated hypoxanthine-dependent superoxide production in the cytosol of rat lung. Tungsten-feeding inhibits xanthine oxidase activity in a variety of tissues in experimental animals. Its therapeutic effect on paraquat intoxication was studied in this paper. In rats fed a tungsten-enriched diet for 5 weeks prior to intraperitoneal injection of 50 mg/kg paraquat dichloride, the mortality decreased significantly compared with rats fed a standard diet. Pretreatment with oxypurinol (1000 mg/kg, s.c.) also ameliorated the paraquat toxicity in rats. We conclude that xanthine oxidase plays an important role in paraquat toxicity and that xanthine oxidase inhibitors may become antidotes for paraquat intoxication.  相似文献   

19.
The chemistry of xanthine oxidase. Reaction with iodoacetamide   总被引:3,自引:3,他引:0       下载免费PDF全文
1. The reaction of milk xanthine oxidase with iodoacetamide has been studied with the silver-silver iodide electrode. 2. The reaction proceeds considerably faster in the presence of xanthine than in its absence. Anaerobically, with excess of xanthine, the reaction takes place as a rapid phase in which the enzyme is inactivated and in which approx. 1 thiol group/mol. of enzyme reacts and as a slower phase in which about 12 groups/mol. react. 3. The rapid reaction appears to be first-order with respect to xanthine oxidase and iodoacetamide and independent of the xanthine concentration with more than about 3mol. of xanthine/mol. of enzyme. 4. The velocity constant of the rapid phase is 0.26min.(-1) at 25 degrees and pH7.0, with 1mm-iodoacetamide and 17mum-xanthine oxidase. The velocity constant for the slower phase is about one-hundredth of this value. 5. The velocities of both phases increase with increasing pH in the range 5.0-9.6. 6. Xanthine may be replaced by salicylaldehyde without affecting the rate of loss of enzymic activity. With sodium dithionite as reducing agent, the reaction is slightly faster. 7. The possible function of thiol groups in the reaction mechanism of the enzyme is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号