首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major acid-soluble spore proteins (ASSPs) isolated from mature spores of Bacillus subtilis are designated alpha, beta, and gamma (about 60, 60, and 100 amino acids in length, respectively). Alpha and beta are very similar, and gamma is very similar to a less predominant ASSP called delta (about 115 amino acids). A minor and very basic ASSP called epsilon is the same size as alpha and beta but is unrelated antigenically. These and several minor ASSPs comprise at least three related families of sporulation-specific gene products. Expression of the alpha and beta genes, detectable as functional mRNA in vitro, coincides with the time of synthesis of all of the major ASSPs in vivo. This apparently coordinate expression is dependent on at least the spo0A, spoIIA, and spoIIIA loci, but not on the spoIVA or spoVA loci, consistent with the late stage of this expression (initiating at 3.5 h after the start of sporulation and peaking at 5 h after start of sporulation). A few minor ASSPs may be asynchronously expressed.  相似文献   

2.
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.  相似文献   

3.
The small acid-soluble spore proteins alpha and beta were not detected during stationary-phase growth of asporogenous Bacillus subtilis mutants blocked in stages 0, II, or III, but mutants blocked in stages IV or V accumulated nearly wild-type levels of these small acid-soluble spore proteins. Similar results were obtained when production of Bacillus megaterium C protein (also a small acid-soluble spore protein), as well as alpha and beta, were monitored in these mutants containing a recombinant plasmid carrying the B. megaterium C protein gene. The only exception was a spo0H mutant which synthesized a small amount of C protein, but no alpha or beta.  相似文献   

4.
Synthesis of acid-soluble spore proteins by Bacillus subtilis.   总被引:2,自引:1,他引:1       下载免费PDF全文
The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.  相似文献   

5.
The amino acid sequence-specific protease (termed GPR) in the bacterium Bacillus megaterium initiates the rapid degradation of small, acid-soluble spore proteins during the germination of spores of this organism. GPR is synthesized during spore formation as an inactive zymogen termed P46, which later autoprocesses to a smaller active form termed P41, which acts during spore germination. However, GPR exhibits no obvious mechanistic or amino acid sequence similarity to any of the known classes of proteases. To initiate the determination of the mechanisms of P46 to P41 conversion, P46 inactivity, and P41 catalysis, B. megaterium GPR has been overexpressed in Escherichia coli and purified to homogeneity by anion-exchange and size exclusion chromatography, and crystals of both P46 and P41 have been obtained by the vapor diffusion method. P46 crystals diffracted x rays to 3.5 A but the crystals of P41 diffracted x rays to only 6.5 A. A native x-ray diffraction data set of P46 has been collected; the unit cell parameters are a = b = 76.8, c = 313.1 A, alpha = beta = gamma = 90 degrees; the space group is tetragonal P41212 or P43212. The asymmetric unit contains two monomeric molecules with a crystal volume per unit protein mass of 2. 85 A3/Da and a solvent content of about 57%. An isomorphous heavy atom derivative data set has also been obtained for P46 crystals with potassium dicyanoaurate (I).  相似文献   

6.
Dormant spores of Bacillus megaterium were found to contain approximately 850 pmol of coenzyme A (CoA) per milligram of dry weight. Of this total, less than 1.5% was acetyl-CoA, 25% was CoA-disulfide, 43% was in disulfide linkage to protein, and the remainder was the free thiol. Dormand spores of Bacillus cereus and Clostridium bifermentans contained 700 and 600 pmol of CoA per milligram of dry weight, respectively; in both species approximately 45% of the CoA 45% of the CoA was in disulfide linkage to protein. During germination of spores of all three species, greater than 75% of the CoA-protein disulfides were cleaved. In B. megaterium, cleavage of these disulfides during spore germination did not require exogenous metabolites and occurred at about the same time as the initiation of germination. Much of the CoA was converted to acetyl-CoA at this time. Dormant spores also contained reduced nicotinamide adenine dinucleotide-dependent CoA-disulfide reductase at levels higher than those in other stages of growth. The level of total CoA in the growing cells was two- to three-fold higher than in spores. This level remained constant throughout growth and sporulation, but less than 2% of the total cellular CoA was in disulfide linkage to protein until late in sporulation. The CoA-protein disulfides accumulated exclusively within the developing spore at about the time when dipicolinic acid was accumulated.  相似文献   

7.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

8.
Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors.  相似文献   

9.
Peptidase and protease activities on many different substrates have been determined in several stages of growth of Bacillus megaterium. Extracts of log-phase cells, sporulating cells, and dormant spores of B. megaterium each hydrolyzed 16 different di- and tripeptides. The specific peptidase activity was highest in dormant spores, and the activity in sporulating cells and log-phase cells was about 1.2-fold and 2- to 3-fold lower, respectively. This peptidase acticity was wholly intracellular since extracellular peptidase activity was not detected throughout growth and sporulation. In contrast, intracellular protease activity on a variety of common protein substrates was highest in sporulating cells, and much extracellular activity was also present at this time. The specific activity of intracellular protease in sporulating cells was about 50- and 30-fold higher than that in log-phase cells and dormant spores, respectively. However, the two unique dormant spores proteins known to be the major species degraded during spore germination were degraded most rapidly by extracts of dormant spores, and slightly slower by extracts from log-phase or sporulating cells. The specific activities for degradation of peptides and proteins are compared to values for intracellular protein turnover during various stages of growth.  相似文献   

10.
Plasmid pUB110, isolated from vegetative cells of Bacillus subtilis, has an average of 34 negative supertwists (tau av = -34). This value falls to -30 early in sporulation, and the plasmid in the mother cell compartment maintains a tau av of -30. However, the plasmid within the developing forespore becomes much more negatively supercoiled, reaching a tau av of -47 in the dormant spore. This increased negative supercoiling in the forespore plasmid takes place in parallel with the synthesis of small, acid-soluble spore proteins, alpha and beta; and the plasmid from spores lacking small, acid-soluble proteins alpha and beta has a tau av of -40. The large increase in negative supercoiling of spore plasmid was also observed with Bacillus megaterium and in B. subtilis containing a plasmid with an origin different from that of pUB110. During spore germination plasmid pUB110 rapidly relaxed back to the tau av value characteristic of vegetative cells. It is possible that the observed changes in forespore plasmid topology are involved in modulating gene expression, DNA photochemistry, or both of these parameters in this compartment.  相似文献   

11.
After a few minutes of germination, nucleoids in the great majority of spores of Bacillus subtilis and Bacillus megaterium were ring shaped. The major spore DNA binding proteins, the alpha/beta-type small, acid-soluble proteins (SASP), colocalized to these nucleoid rings early in spore germination, as did the B. megaterium homolog of the major B. subtilis chromosomal protein HBsu. The percentage of ring-shaped nucleoids was decreased in germinated spores with lower levels of alpha/beta-type SASP. As spore outgrowth proceeded, the ring-shaped nucleoids disappeared and the nucleoid became more compact. This change took place after degradation of most of the spores' pool of major alpha/beta-type SASP and was delayed when alpha/beta-type SASP degradation was delayed. Later in spore outgrowth, the shape of the nucleoid reverted to the diffuse lobular shape seen in growing cells.  相似文献   

12.
Cloned atp genes for the proton-translocating ATPase of the obligate aerobe Bacillus megaterium have been demonstrated to be capable of complementing Escherichia coli ATPase (unc) mutants (Hawthorne, C. A., and Brusilow, W. S. A. (1986) J. Biol. Chem. 261, 5245-5248). To determine the minimum subunit requirements for cross-species complementation, we constructed all combinations of B. megaterium atpA, G, D, and C genes (coding for the alpha, gamma, beta, and epsilon subunits, respectively) and tested their abilities to complement two uncA (alpha subunit) and two uncD (beta subunit) mutants of E. coli. The results indicated that complementation of either uncD mutant required atpD (beta) only. Complementation of one of the uncA (alpha) mutants required atpA, G, and D (alpha, gamma, and beta) and possibly atpE (epsilon) as well. The other uncA mutant was not complemented by any combination of B. megaterium ATPase genes. Complementation of a beta mutant by atpD (beta) or atpD and C (beta epsilon) produced cells which could grow aerobically on a nonfermentable carbon source (succinate) but not anaerobically on rich medium containing glucose. These E. coli therefore had become obligate aerobes. The ability to grow anaerobically could be restored to the mutant complemented by atpD alone by growth at pH 7.5 or pH 8 in the presence of 0.1 M potassium.  相似文献   

13.
Aims:  To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination.
Methods and Results:  Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination.
Conclusions:  CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores.
Significance and Impact of the Study:  These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.  相似文献   

14.
Rosso ML  Vary PS 《Plasmid》2005,53(3):205-217
Bacillus megaterium QM B1551 contains seven plasmids. Two are small rolling circle plasmids and five are theta-replicating plasmids with cross-hybridizing replicons that define a new family of very homologous yet compatible theta replicons. Previous sequencing of several of the plasmids has shown genes with high similarity to those on the genomes and plasmids of other Gram-positive bacteria. To test the possible distribution of these plasmids, nine other B. megaterium strains and 20 other Bacillus or related species were tested for the presence of similar replicons, and specific flanking DNA by both hybridization and PCR. The theta replicons were widespread among the B. megaterium strains, and two had one or more of the rolling circle plasmids, but none of the plasmid replicon regions were observed in the other Bacillus or related species. It appears from the data that even though some plasmids carry genes suggesting horizontal transfer, their replicons seem to be unique to B. megaterium, or rarely present in related species.  相似文献   

15.
Bacillus megaterium is a potential bioremediation and biocontrol agent. The accumulation of reserve polymers, such as poly-3-hydroxybutyrate (PHB), increases survival of B. megaterium in water. We used wild-type strains of this species and mutant strains deficient in PHB synthesis in soil microcosms for testing the hypothesis that differences in survival capabilities and spore quality between strains is maintained in heterogeneous environments enriched with organic matter. No differences in survival between strains, nor a decrease in bacterial cell numbers were observed in sterile soil microcosms. In non-sterile soil, the total cell number (vegetative cells plus spores) of the PHB wild-type strain was 3.5 times higher than that of the PHB-negative mutant. We suggest that for predictive purposes, validation of survival in a variety of conditions is necessary.  相似文献   

16.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B, anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

17.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B. anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

18.
Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores.  相似文献   

19.
20.
Effect of Lysozyme on Resting Spores of Bacillus Megaterium   总被引:6,自引:1,他引:5       下载免费PDF全文
Resting spores of Bacillus megaterium ATCC 9885 were found to be markedly affected by lysozyme. Exposure to as little as 1.5 mug of lysozyme per ml caused the spores to lose refractility, the darkened spores to shed their coat structures, and the spore central bodies to lyse. The spores of seven other strains of B. megaterium and seven other Bacillus species were not similarly affected by lysozyme. Proteolytic enzymes such as pronase, trypsin, pepsin, and subtilisin did not induce the change. The action of lysozyme differed in certain important respects from that of common "physiological" germinants. Its action was considered to be direct via its enzymatic attack on exposed sites directly accessible in the resting spores of B. megaterium ATCC 9885.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号