首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The emerging scientific field of proteomics encompasses the identification, characterization, and quantification of the protein content or proteome of whole cells, tissues, or body fluids. The potential for proteomic technologies to identify and quantify novel proteins in the plasma that can function as biomarkers of the presence or severity of clinical disease states holds great promise for clinical use. However, there are many challenges in translating plasma proteomics from bench to bedside, and relatively few plasma biomarkers have successfully transitioned from proteomic discovery to routine clinical use. Key barriers to this translation include the need for "orthogonal" biomarkers (i.e., uncorrelated with existing markers), the complexity of the proteome in biological samples, the presence of high abundance proteins such as albumin in biological samples that hinder detection of low abundance proteins, false positive associations that occur with analysis of high dimensional datasets, and the limited understanding of the effects of growth, development, and age on the normal plasma proteome. Strategies to overcome these challenges are discussed.  相似文献   

2.
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.  相似文献   

3.
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.  相似文献   

4.
From genomics to proteomics   总被引:1,自引:0,他引:1  
  相似文献   

5.
植物蛋白质组学研究进展   总被引:39,自引:0,他引:39       下载免费PDF全文
 蛋白质组学是后基因组时代功能基因组学研究的新兴学科和热点领域。该文简要介绍了蛋白质组学产生的科学背景、研究方法和研究内容。蛋白质组学研究方法主要有双向聚丙烯酰胺凝胶电泳(2D-PAGE)、质谱(Mass-spectrometric)技术、蛋白质芯片(Protein chips)技术、酵母双杂交系统(Yeast two-hybrid system)、植物蛋白质组数据库等。其应用的范围包括植物群体遗传学、在个体水平上植物对生物和非生物环境的适应机制、植物的发育和组织器官的分化过程,以及不同亚细胞结构在生理生态过程中的作用等诸多方面。同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

6.
Proteomes, the ensembles of all proteins expressed by cells or tissues, are typically analysed by mass spectrometry. Recent technical and computational advances have greatly increased the fraction of a proteome that can be identified and quantified in a single study. Current mass spectrometry-based proteomic strategies have the potential to reproducibly, accurately, quantitatively and comprehensively measure any protein or whole proteomes from cells and tissues at different states. Achieving these goals will require complete proteome maps and analytical strategies that use these maps as prior information and will greatly enhance the impact of proteomics on biological and clinical research.  相似文献   

7.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

8.
Synaptic vesicles are key organelles in chemical signal transmission allowing neurons to communicate with each other and neighboring cells. The numerous tasks of synaptic vesicles are governed by a unique set of proteins. Recently, proteomic studies have been performed by several laboratories employing mass spectrometry and immunoblotting in order to identify the complete proteinaceous inventory of the purified synaptic vesicle compartment. Surprisingly, several fold more proteins were assigned to the organelle than previously anticipated. Despite several novel candidates, a large variety of proteins assumed to be only transiently associated with the vesicular compartment turned out to be constitutive components of the synaptic vesicle proteome. In recent years, the focus on protein-protein interactions has led to a deeper understanding of functional aspects in cellular trafficking. Several proteins acting in concert in defined cellular processes build an interactome. This article will survey the interacting partners during the entire synaptic vesicle life cycle identified by proteomic approaches. This includes anterograde and retrograde axonal transport of the synaptic vesicle membrane compartment, transport within the presynapse to the active zone, priming, docking, exocytosis, endocytosis, recycling and neurotransmitter reuptake to replenish the pool of exocytosis-competent synaptic vesicles.  相似文献   

9.
New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientist's data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines.  相似文献   

10.
Kota U  Goshe MB 《Phytochemistry》2011,72(10):1040-1060
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.  相似文献   

11.
Strategies for removal of high abundance proteins have been increasingly utilized in proteomic studies of serum/plasma and other body fluids to enhance the detection of low abundance proteins and achieve broader proteome coverage; however, both the reproducibility and specificity of the high abundance protein depletion process still represent common concerns. Here we report a detailed evaluation of immunoaffinity subtraction performed applying the ProteomeLab IgY-12 system that is commonly used in human serum/plasma proteome characterization in combination with high resolution LC-MS/MS. Plasma samples were repeatedly processed using this approach, and the resulting flow-through fractions and bound fractions were individually analyzed for comparison. The removal of target proteins by the immunoaffinity subtraction system and the overall process was highly reproducible. Non-target proteins, including one spiked protein standard (rabbit glyceraldehyde-3-phosphate dehydrogenase), were also observed to bind to the column at different levels but also in a reproducible manner. The results suggest that multiprotein immunoaffinity subtraction systems can be readily integrated into quantitative strategies to enhance detection of low abundance proteins in biomarker discovery studies.  相似文献   

12.
13.
14.
After 10 years of extensive proteomic research, it has become increasingly apparent that new technologies are sorely needed for detecting the low-abundance proteome-those proteins (up to 50% in any proteome) whose concentration in tissues or cells falls below the detection limits of currently available methodologies. Here we survey one such method: a combinatorial ligand library (called ProteoMiner), comprising dozens of millions of hexapeptides capable of interacting with most, if not all, proteins in any given proteome. They act by drastically reducing the signal of high-abundance species while increasing the level of the low-abundance components to bring their signal within the detection limit of present-day tools. Such a library has been tested against a number of human biological fluids, such as sera, urine, cerebrospinal fluid as well as against cell lysates (e.g., platelets, red blood cells) with interesting results.  相似文献   

15.
16.
A proteomic analysis of human bile   总被引:16,自引:0,他引:16  
We have carried out a comprehensive characterization of human bile to define the bile proteome. Our approach involved fractionation of bile by one-dimensional gel electrophoresis and lectin affinity chromatography followed by liquid chromatography tandem mass spectrometry. Overall, we identified 87 unique proteins, including several novel proteins as well as known proteins whose functions are unknown. A large majority of the identified proteins have not been previously described in bile. Using lectin affinity chromatography and enzymatically labeling of asparagine residues carrying glycan moieties by (18)O, we have identified a total of 33 glycosylation sites. The strategy described in this study should be generally applicable for a detailed proteomic analysis of most body fluids. In combination with "tagging" approaches for differential proteomics, our method could be used for identification of cancer biomarkers from any body fluid.  相似文献   

17.
18.
A new branch of molecular biology, proteomics, has been developed recently due to a success in genomics and informatics. Proteomics is currently solving problems of the full proteome mapping of various biological substances, e.g., body fluids, cells, and tissues in the normal state and pathology; and also search for biomarkers of pathologies, including tumors. Data on the urine proteome have been analyzed in this review. Analysis of the methods used in proteomics, including sample preparation, study strategy, as well as published data on urine proteome over the past five years are presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号